Skip to main content
Log in

No difference between lag screw and helical blade for cephalomedullary nail cut-out a systematic review and meta-analysis

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Introduction

Cephalomedullary nail (CMN) cut-out is a severe complication of treatment of intertrochanteric femur fractures. This study aimed to identify modifiable risk factors predictive of implant cut-out including: CMN proximal fixation type (lag screw vs. helical blade), tip-apex distance (TAD), reduction quality, nail length, screw location, and surgeon fellowship training.

Methods

A systematic review of the published literature was conducted on Pubmed/MEDLINE and Cochrane Library databases for English language papers (January 1st, 1985–May 10th, 2020), with 21 studies meeting inclusion/exclusion criteria. Studies providing quantitative data comparing factors affecting CMN nail cut-out were included, including fixation type (lag screw vs. helical blade), tip-apex distance (TAD), reduction quality, nail length, and screw location. Twelve studies were included and graded by MINOR and Newcastle–Ottawa Scale to identify potential biases. Meta-analysis and pooled analysis were conducted when possible with forest plots to summarize odds ratios (OR) and associated 95% confidence interval (CI).

Results

There was no difference in implant cut-out rate between lag screws (n = 745) versus helical blade (n = 371) (OR: 1.03; 95% CI: 0.25–4.23). Pooled data analysis revealed TAD > 25 mm (n = 310) was associated with higher odds of increased cut-out rate relative to TAD < 25 mm (n = 730) (OR: 3.72; 95% CI: 2.06–6.72).

Conclusion

Our review suggests that cephalomedullary implant type (lag screw vs. helical blade) is not a risk factor for implant cut-out. Consistent with the previous literature, increased tip-apex distance > 25 mm is a reliable predictor of implant cut-out risk. Suboptimal screw location and poor reduction quality are associated with increased risk of screw cut-out.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mattisson L, Bojan A, Enocson A (2018) Epidemiology, treatment and mortality of trochanteric and subtrochanteric hip fractures: data from the swedish fracture register 11 medical and health sciences 1103 clinical sciences 11 medical and health sciences 1117 public health and health services. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-018-2276-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Panteli M, Rodham P, Giannoudis PV (2015) Biomechanical rationale for implant choices in femoral neck fracture fixation in the non-elderly. Injury 46:445–452. https://doi.org/10.1016/j.injury.2014.12.031

    Article  PubMed  Google Scholar 

  3. Liu W, Zhou D, Liu F et al (2013) Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg 75:304–310. https://doi.org/10.1097/TA.0b013e31829a2c43

    Article  PubMed  Google Scholar 

  4. Adeyemi A, Delhougne G (2019) Incidence and economic burden of intertrochanteric fracture. JBJS Open Access 4:e0045. https://doi.org/10.2106/jbjs.oa.18.00045

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaplan K, Miyamoto R, Levine BR et al (2008) Surgical management of hip fractures: an evidence-based review of the literature. II—intertrochanteric fractures. J Am Acad Orthop Surg 16:665–673

    Article  Google Scholar 

  6. Tr D, Jl S, Horsman A et al (1990) Intertrochanteric femoral fractures. Mech Fail After Intern Fixat 72:26–31. https://doi.org/10.1302/0301-620X.72B1.2298790

    Article  Google Scholar 

  7. Boukebous B, Guillon P, Vandenbussche E, Rousseau MA (2018) Correlation between femoral offset loss and dynamic hip screw cut-out complications after pertrochanteric fractures: a case-control study. Eur J Orthop Surg Traumatol 28:1321–1326. https://doi.org/10.1007/S00590-018-2204-0

    Article  PubMed  Google Scholar 

  8. Caruso G, Bonomo M, Valpiani G et al (2017) A 6-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: can the tip-apex distance (TAD) still be considered the best parameter? Bone Jt Res 6:481–488. https://doi.org/10.1302/2046-3758.68.BJR-2016-0299.R1

    Article  CAS  Google Scholar 

  9. Murena L, Moretti A, Meo F et al (2018) Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: a retrospective study of 813 patients. Arch Orthop Trauma Surg 138:351–359. https://doi.org/10.1007/s00402-017-2863-z

    Article  PubMed  Google Scholar 

  10. Shannon SF, Yuan BJ, Cross WW et al (2019) Short versus long cephalomedullary nails for pertrochanteric hip fractures: a randomized prospective study. J Orthop Trauma 33:480–486. https://doi.org/10.1097/BOT.0000000000001553

    Article  PubMed  Google Scholar 

  11. Schnell S, Friedman SM, Mendelson DA et al (2010) The 1-Year mortality of patients treated in a hip fracture program for elders. Geriatr Orthop Surg Rehabil 1:6–14. https://doi.org/10.1177/2151458510378105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsueh KK, Fang CK, Chen CM et al (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276. https://doi.org/10.1007/s00264-009-0866-2

    Article  PubMed  Google Scholar 

  13. Erez O, Dougherty PJ (2012) Early complications associated with cephalomedullary nail for intertrochanteric hip fractures. J Trauma Acute Care Surg. https://doi.org/10.1097/TA.0b013e31821c2ef2

    Article  PubMed  Google Scholar 

  14. Turgut A, Kalenderer Ö, Karapınar L et al (2016) Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of 298 patients. Arch Orthop Trauma Surg 136:623–630. https://doi.org/10.1007/s00402-016-2410-3

    Article  PubMed  Google Scholar 

  15. Kanwat H, Trikha V, Mittal S, Jain A (2018) Risk factors associated with cephalomedullary nail cutout in the treatment of trochanteric hip fractures. J Orthop Trauma 32:e385–e386

    Article  Google Scholar 

  16. Ciufo DJ, Zaruta DA, Lipof JS et al (2017) Risk factors associated with cephalomedullary nail cutout in the treatment of trochanteric hip fractures. J Orthop Trauma 31:583–588. https://doi.org/10.1097/BOT.0000000000000961

    Article  PubMed  Google Scholar 

  17. Puthezhath K, Jayaprakash C (2017) Is calcar referenced tip-apex distance a better predicting factor for cutting out in biaxial cephalomedullary nails than tip-apex distance? J Orthop Surg. https://doi.org/10.1177/2309499017727920

    Article  Google Scholar 

  18. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Jt Surg - Ser A 77:1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  Google Scholar 

  19. Stern LC, Gorczyca JT, Kates S et al (2017) Radiographic review of helical blade versus lag screw fixation for cephalomedullary nailing of low-energy peritrochanteric femur fractures: there is a difference in cutout. J Orthop Trauma 31:305–310

    Article  Google Scholar 

  20. Chapman T, Zmistowski B, Krieg J et al (2018) Helical blade versus screw fixation in the treatment of hip fractures with cephalomedullary devices: incidence of failure and atypical “medial cutout.” J Orthop Trauma 32:397–402. https://doi.org/10.1097/BOT.0000000000001193

    Article  PubMed  Google Scholar 

  21. Kane P, Vopat B, Heard W et al (2014) Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Clin Orthop Relat Res 472:2492–2498. https://doi.org/10.1007/s11999-014-3594-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lenz M, Schwinn J, Hofmann-Fliri L et al (2019) Influence of reduced tip-apex distance on helical blade fixation: a biomechanical study. J Orthop Res 37:649–654. https://doi.org/10.1002/jor.24202

    Article  CAS  PubMed  Google Scholar 

  23. Takigawa N, Moriuchi H, Abe M et al (2014) Complications and fixation techniques of trochanteric fractures with the TARGON® PF. Injury. https://doi.org/10.1016/j.injury.2013.10.036

    Article  PubMed  Google Scholar 

  24. Stern R, Lübbeke A, Suva D et al (2011) Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop 35:1855–1861. https://doi.org/10.1007/s00264-011-1232-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. John B, Sharma A, Mahajan A, Pandey R (2019) Tip-apex distance and other predictors of outcome in cephalomedullary nailing of unstable trochanteric fractures. J Clin Orthop Trauma 10:S88–S94. https://doi.org/10.1016/j.jcot.2019.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li H, Wang H, Zhang Y et al (2019) The migration of helical blade and the tip apex distance value in cephalomedullary nail for geriatric intertrochanteric fractures. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 33:1234–1238. https://doi.org/10.7507/1002-1892.201904125

    Article  PubMed  Google Scholar 

  27. Ibrahim I, Appleton PT, Wixted JJ et al (2019) Implant cut-out following cephalomedullary nailing of intertrochanteric femur fractures: are helical blades to blame? Injury 50:926–930. https://doi.org/10.1016/j.injury.2019.02.015

    Article  PubMed  Google Scholar 

  28. Johnson J, Deren M, Chambers A et al (2019) Biomechanical analysis of fixation devices for basicervical femoral neck fractures. J Am Acad Orthop Surg 27:e41–e48. https://doi.org/10.5435/JAAOS-D-17-00155

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goffin JM, Pankaj P, Simpson AH (2013) The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. J Orthop Res 31:596–600. https://doi.org/10.1002/jor.22266

    Article  PubMed  Google Scholar 

  30. Xu Y, Geng D, Yang H et al (2010) Treatment of unstable proximal femoral fractures: comparison of the proximal femoral nail antirotation and gamma nail 3. Orthopedics. https://doi.org/10.3928/01477447-20100526-03

    Article  PubMed  Google Scholar 

  31. Vrabel M (2015) Preferred reporting items for systematic reviews and meta-analyses. Oncol Nurs Forum 42:552–554

    Article  Google Scholar 

  32. Davis TRC, Sher JL, Horsman A et al (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Jt Surg: Ser B 72:26–31. https://doi.org/10.1302/0301-620x.72b1.2298790

    Article  CAS  Google Scholar 

  33. Parker MJ (1992) Cutting-out of the dynamic hip screw related to its position. J Bone Jt Surg: Ser B 74:625. https://doi.org/10.1302/0301-620x.74b4.1624529

    Article  CAS  Google Scholar 

  34. Slim K, Nini E, Forestier D et al (2003) Methodological index for non-randomized studies (Minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  35. Lo CKL, Mertz D, Loeb M (2014) Newcastle-Ottawa scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol 14:1–5. https://doi.org/10.1186/1471-2288-14-45

    Article  Google Scholar 

  36. Oremus M, Oremus C, Hall GBC et al (2012) Inter-rater and test-retest reliability of quality assessments by novice student raters using the Jadad and Newcastle–Ottawa scales. BMJ Open 2:e001368. https://doi.org/10.1136/bmjopen-2012-001368

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parry JA, Barrett I, Schoch B et al (2018) Does the angle of the nail matter for pertrochanteric fracture reduction? Matching nail angle and native neck-shaft angle. J Orthop Trauma 32:174–177. https://doi.org/10.1097/BOT.0000000000001096

    Article  PubMed  Google Scholar 

  38. Herman A, Landau Y, Gutman G et al (2012) Radiological evaluation of intertrochanteric fracture fixation by the proximal femoral nail. Injury 43:856–863. https://doi.org/10.1016/j.injury.2011.10.030

    Article  PubMed  Google Scholar 

  39. Kleweno C, Morgan J, Redshaw J et al (2014) Short versus long cephalomedullary nails for the treatment of intertrochanteric hip fractures in patients older than 65 years. J Orthop Trauma 28:391–397. https://doi.org/10.1097/BOT.0000000000000036

    Article  PubMed  Google Scholar 

  40. Hou Z, Bowen TR, Irgit KS et al (2013) Treatment of pertrochanteric fractures (ota 31–a1 and a2): long versus short cephalomedullary nailing. J Orthop Trauma 27:318–324. https://doi.org/10.1097/BOT.0b013e31826fc11f

    Article  PubMed  Google Scholar 

  41. Sommers MB, Roth C, Hall H et al (2004) A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma 18:361–368. https://doi.org/10.1097/00005131-200407000-00006

    Article  PubMed  Google Scholar 

  42. Cleveland M, Bosworth DM, Thompson FR et al (1959) A 10-year analysis of intertrochanteric fractures of the femur. J Bone Joint Surg Am 41:1399–1408. https://doi.org/10.2106/00004623-195941080-00003

    Article  PubMed  Google Scholar 

  43. Kim DC, Honeycutt MW, Riehl JT (2019) Hip fractures. Curr Orthop Pract 30:385–394. https://doi.org/10.1097/BCO.0000000000000771

    Article  Google Scholar 

  44. Walton NP, Wynn-Jones H, Ward MS, Wimhurst JA (2005) Femoral neck-shaft angle in extra-capsular proximal femoral fracture fixation; does it make a TAD of difference? Injury 36:1361–1364. https://doi.org/10.1016/j.injury.2005.06.039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas S. Piuzzi.

Ethics declarations

Conflict of interest

The present review of the literature did not require patient interaction, interventions, or consent. Ferghana Partners Inc: Paid consultant. ISCT: Board or committee member, Journal of Hip Surgery: Editorial or governing board, Journal of Knee Surgery: Editorial or governing board, Orthopaedic Research Society: Board or committee member, RegenLab: Research support, Zimmer: Research support, Brooklyn Orthopaedic Society: Board or committee member, DePuy, A Johnson & Johnson Company: Paid consultant, Ahmed K. Emara, Nihar Shah, Matthew Ciminero, Kevin Zhai, and Ivan Golub have nothing to disclose.

Ethical approval

The present systematic review of the literature did not require institutional review board approval.

Informed consent

This was a systematic review of the published literature; therefore, no consent was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, M., Shah, N.S., Golub, I. et al. No difference between lag screw and helical blade for cephalomedullary nail cut-out a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 32, 1617–1625 (2022). https://doi.org/10.1007/s00590-021-03124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-021-03124-8

Keywords

Navigation