Skip to main content

Advertisement

Log in

Correlation between femoral offset loss and dynamic hip screw cut-out complications after pertrochanteric fractures: a case–control study

  • Original Article • HIP - FRACTURES
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Screw–plates disassembly incidence after pertrochanteric fracture (PF) amounts to 1 and 16% among the elderly population. The main occurrence is early cervical screw cut-out. The population at highest risk of disassembly remains difficult to identify. The correlation between femoral offset loss and disassembly occurrence has never been surveyed.

Objectives

A radiological prognosis score for screw plate disassembly was defined to reflect trochanteric impaction (TI); it was based on a femoral offset ratio.

Study design and methods

Our single-centre retrospective case–control study surveyed patients suffering from Dynamic Hip Screw (DHS, Synthes®) disassembly following osteosynthesis of non-pathological osteoporotic PF between 2004 and 2014. All cases were categorised by age and gender and paired to three patients in the control group. The primary endpoint was TI measurement, corresponding to offset loss on the operated hip compared to healthy hip offset and expressed as a percentage. The measurement was done on an immediate postoperative X-ray. The secondary endpoints were tip apex distance (TAD) measurement, Ender and AO classifications, as well as postoperative weight-bearing prescription.

Results

Twenty-three cases and 69 controls were surveyed. The case group’s average age was 87; 70% of the cases were women. The main disassembly occurrence delay was after 27 days. Average TI was 26% within the patients global group and 12% within the control group (p < 10−5). Over a 21% impaction percentage, disassembly occurrence represents a greater risk: OR = 21.95% CI [5.4–104.3], p < 10−5. Ender 3 type fractures were the most frequent indication for surgery within the case group. Average TAD was 20 mm within the case group, and 17 mm within the control group (p = 0.03). The weight-bearing prescription rate was 52% within the control group and 21% within the case group (p = 0.014). 14.5% of the control group had a TI > 21%.

Conclusions

Using the offset ratio tool, TI measurement was associated with a greater risk of DHS disassembly when it was higher than 21%. The exclusive use of a DHS device does not seem optimal for a TI > 21%. Weight-bearing may be prescribed for all the patients with a TI < 21%, provided good implant positioning is secured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Briot K, Maravic M, Roux C (2015) Changes in number and incidence of hip fractures over 12 years in France. Bone 81:131–137

    Article  PubMed  Google Scholar 

  2. Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev 8:CD000093

    Google Scholar 

  3. Putz P, Coussaert E, Delvaux D, Long Pretz P, Thys R, Cantraine F (1990) Osteosynthesis of lesions of the proximal femur using dynamic screw plates. Multicenter study: 1871 cases. Int Orthop 14:285–292

    Article  PubMed  CAS  Google Scholar 

  4. Hsueh K-K, Fang C-K, Chen C-M, Su Y-P, Wu H-F, Chiu F-Y (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276

    Article  PubMed  Google Scholar 

  5. Baird RP, O’Brien P, Cruickshank D (2014) Comparison of stable and unstable pertrochanteric femur fractures managed with 2- and 4-hole side plates. Can J Surg J Can Chir 57:327–330

    Article  Google Scholar 

  6. Oger P, Katz V, Lecorre N, Beaufils P (1998) Fracture of the great trochanter treated by dynamic hip screw plate: measure of impaction according to fracture type. Rev Chir Orthop Reparatrice Appar Mot 84:539–545

    PubMed  CAS  Google Scholar 

  7. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064

    Article  PubMed  CAS  Google Scholar 

  8. Simpson AH, Varty K, Dodd CA (1989) Sliding hip screws: modes of failure. Injury 20:227–231

    Article  PubMed  CAS  Google Scholar 

  9. Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, Flecher X (2009) Le déport fémoral (offset): concept anatomique, définitions, mesure, rôle dans la planification et la réalisation d’une arthroplastie de hanche. Rev Chir Orthopédique Traumatol 95:248–257

    Article  Google Scholar 

  10. Buecking B, Boese CK, Seifert V, Ruchholtz S, Frink M, Lechler P (2015) Femoral offset following trochanteric femoral fractures: a prospective observational study. Injury 46:88–92

    Article  Google Scholar 

  11. Gordon M, Berntsson P-O, Sjölund E, Demir Y, Hedbeck CJ, Stark A (2016) Loss of offset after pertrochanteric hip fractures affects hip function one year after surgery with a short intramedullary nail. A prospective cohort study. Int Orthop 40:799–806

    Article  PubMed  Google Scholar 

  12. Lechler P, Frink M, Gulati A, Murray D, Renkawitz T, Bücking B (2014) The influence of hip rotation on femoral offset in plain radiographs. Acta Orthop 85:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  13. Briot B (1980) Fractures trochantériennes récentes: anatomie pathologique et classifications. Fractures de l’extrémité supérieure du fémur. Cahiers d’enseignement de la SOFCO, pp 69–77

  14. Haidukewych GJ, Israel TA, Berry DJ (2001) Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am 83:643–650

    Article  PubMed  Google Scholar 

  15. Haute Autorité de Santé, France (2016) Chirurgie des fractures de l’extrémité proximale du fémur chez les patients âgés. Méthode Recommandations pour la pratique clinique

  16. Hélin M, Pelissier A, Boyer P, Delory T, Estellat C, Massin P (2015) Does the PFNA™ nail limit impaction in unstable intertrochanteric femoral fracture? A 115 case-control series. Orthop Traumatol Surg Res 101:45–49

    Article  PubMed  Google Scholar 

  17. Schipper IB, Steyerberg EW, Castelein RM, van Vugt AB (2001) Reliability of the AO/ASIF classification for pertrochanteric femoral fractures. Acta Orthop Scand 72:36–41

    Article  PubMed  CAS  Google Scholar 

  18. Pervez H, Parker MJ, Vowler S (2004) Prediction of fixation failure after sliding hip screw fixation. Injury 35:994–998

    Article  PubMed  Google Scholar 

  19. Li C, Xie B, Chen S, Lin G, Yang G, Zhang L (2016) The effect of local bone density on mechanical failure after internal fixation of pertrochanteric fractures. Arch Orthop Trauma Surg 136:223–232

    Article  PubMed  Google Scholar 

  20. Janzing HMJ, Houben BJJ, Brandt SE, Chhoeurn V, Lefever S, Broos P (2002) The Gotfried PerCutaneous Compression Plate versus the Dynamic Hip Screw in the treatment of pertrochanteric hip fractures: minimal invasive treatment reduces operative time and postoperative pain. J Trauma 52:293–298

    PubMed  Google Scholar 

  21. De la Caffinière JY, Ferrer C, Laurent A, de la Caffinière M (1997) Evaluation of impaction on bone nail and bone plate of the pertrochanteric fracture. Rev Chir Orthopédique Réparatrice Appar Mot 83:243–250

    Google Scholar 

  22. Barrios C, Broström LA, Stark A, Walheim G (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 7:438–442

    Article  PubMed  CAS  Google Scholar 

  23. Selikson S, Damus K, Hamerman D (1988) Risk factors associated with immobility. J Am Geriatr Soc 36:707–712

    Article  PubMed  CAS  Google Scholar 

  24. Brown CJ, Friedkin RJ, Inouye SK (2004) Prevalence and outcomes of low mobility in hospitalized older patients. J Am Geriatr Soc 52:1263–1270

    Article  PubMed  Google Scholar 

  25. Verhofstad MHJ, van der Werken C (2004) DHS osteosynthesis for stable pertrochanteric femur fractures with a two-hole side plate. Injury 35:999–1002

    Article  PubMed  Google Scholar 

  26. Rudiger HA, Parvex V, Terrier A (2014) Effet d’une perte d’offset fémoral sur les bras de leviers des muscles après arthroplastie totale de hanche—une analyse 3D. Rev Chir Orthopédique Traumatol 100:221–230

    Article  Google Scholar 

  27. Merle C, Waldstein W, Pegg E, Streit MR, Gotterbarm T, Aldinger PR (2012) Femoral offset is underestimated on anteroposterior radiographs of the pelvis but accurately assessed on anteroposterior radiographs of the hip. J Bone Joint Surg Br 94:477–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Boukebous.

Ethics declarations

Conflict of interest

The authors did not declare conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukebous, B., Guillon, P., Vandenbussche, E. et al. Correlation between femoral offset loss and dynamic hip screw cut-out complications after pertrochanteric fractures: a case–control study. Eur J Orthop Surg Traumatol 28, 1321–1326 (2018). https://doi.org/10.1007/s00590-018-2204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-018-2204-0

Keywords

Navigation