Skip to main content

Advertisement

Log in

Comparison of major spine navigation platforms based on key performance metrics: a meta-analysis of 16,040 screws

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The objective of this meta-analysis is to compare available computer-assisted navigation platforms by key performance metrics including pedicle screw placement accuracy, operative time, neurological complications, and blood loss.

Methods

A systematic review was conducted using major databases for articles comparing pedicle screw accuracy of computer-assisted navigation to conventional (freehand or fluoroscopy) controls via post-operative computed tomography. Outcome data were extracted and pooled by random-effects model for analysis.

Results

All navigation platforms demonstrated significant reduction in risk of breach, with Stryker demonstrating the highest accuracy compared to controls (OR 0.16 95% CI 0.06 to 0.41, P < 0.00001, I2 = 0%) followed by Medtronic. There were no significant differences in accuracy or most surgical outcome measures between platforms; however, BrainLab demonstrated significantly faster operative time compared to Medtronic by 30 min (95% CI − 63.27 to − 2.47, P = 0.03, I2 = 74%). Together, there was significantly lower risk of major breach in the navigation group compared to controls (OR 0.42, 95% CI 0.27–0.63, P < 0.0001, I2 = 56%).

Conclusions

When comparing between platforms, Stryker demonstrated the highest accuracy, and Brainlab the shortest operative time, both followed by Medtronic. No significant difference was found between platforms regarding neurologic complications or blood loss. Overall, our results demonstrated a 60% reduction in risk of major breach utilizing computer-assisted navigation, coinciding with previous studies, and supporting its validity. This study is the first to directly compare available navigation platforms offering insight for further investigation and aiding in the institutional procurement of platforms.

Level 3 evidence

Meta-analysis of Level 3 studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data sharing statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Shin BJ, James AR, Njoku IU, Härtl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion: a review. J Neurosurg Spine 17:113–122. https://doi.org/10.3171/2012.5.SPINE11399

    Article  PubMed  Google Scholar 

  2. Meng X, Guan X, Zhang H, He S (2016) Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis. Neurosurg Rev 39:385–391. https://doi.org/10.1007/s10143-015-0679-2

    Article  PubMed  Google Scholar 

  3. Fan Y, Du J, Zhang J, Liu S, Xue X, Huang Y, Zhang J, Hao D (2017) Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit 23:5960–5968. https://doi.org/10.12659/MSM.905713

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li H-M, Zhang R-J, Shen C-L (2020) Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine 45:E111–E119. https://doi.org/10.1097/BRS.0000000000003193

    Article  PubMed  Google Scholar 

  5. Li Y, Chen L, Liu Y, Ding H, Lu H, Pan A, Zhang X, Hai Y, Guan L (2022) Accuracy and safety of robot-assisted cortical bone trajectory screw placement: a comparison of robot-assisted technique with fluoroscopy-assisted approach. BMC Musculoskelet Disord 23:328. https://doi.org/10.1186/s12891-022-05206-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Innocenzi G, Bistazzoni S, D’Ercole M, Cardarelli G, Ricciardi F (2017) Does navigation improve pedicle screw placement accuracy? Comparison between navigated and non-navigated percutaneous and open fixations. In: Visocchi M, Mehdorn HM, Katayama Y, von Wild KRH (eds) Trends in reconstructive neurosurgery. Springer, Cham, pp 289–295

    Chapter  Google Scholar 

  7. Sun J, Wu D, Wang Q, Wei Y, Yuan F (2020) Pedicle screw insertion: is O-arm–based navigation superior to the conventional freehand technique? A systematic review and meta-analysis. World Neurosurg 144:e87–e99. https://doi.org/10.1016/j.wneu.2020.07.205

    Article  PubMed  Google Scholar 

  8. Overley SC, Cho SK, Mehta AI, Arnold PM (2017) Navigation and robotics in spinal surgery: Where are we now? Neurosurgery 80:S86. https://doi.org/10.1093/neuros/nyw077

    Article  PubMed  Google Scholar 

  9. Rawicki N, Dowdell JE, Sandhu HS (2021) Current state of navigation in spine surgery. Ann Transl Med 9:85–85. https://doi.org/10.21037/atm-20-1335

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine 37:E496–E501. https://doi.org/10.1097/BRS.0b013e31824b7767

    Article  PubMed  Google Scholar 

  11. Laudato PA, Pierzchala K, Schizas C (2018) Pedicle screw insertion accuracy using O-arm, robotic guidance, or freehand technique: a comparative study. Spine 43:E373–E378. https://doi.org/10.1097/BRS.0000000000002449

    Article  PubMed  Google Scholar 

  12. Urbanski W, Jurasz W, Wolanczyk M, Kulej M, Morasiewicz P, Dragan SL, Zaluski R, Miekisiak G, Dragan SF (2018) Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery. Clin Orthop 476:1020–1027. https://doi.org/10.1007/s11999.0000000000000204

    Article  PubMed  PubMed Central  Google Scholar 

  13. Perdomo-Pantoja A, Ishida W, Zygourakis C, Holmes C, Iyer RR, Cottrill E, Theodore N, Witham TF, Lo SL (2019) Accuracy of current techniques for placement of pedicle screws in the spine: a comprehensive systematic review and meta-analysis of 51,161 screws. World Neurosurg 126:664-678.e3. https://doi.org/10.1016/j.wneu.2019.02.217

    Article  PubMed  Google Scholar 

  14. Tian N-F, Huang Q-S, Zhou P, Zhou Y, Wu R-K, Lou Y, Xu H-Z (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20:846–859. https://doi.org/10.1007/s00586-010-1577-5

    Article  PubMed  Google Scholar 

  15. Gertzbein S, Robbins S (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14. https://doi.org/10.1097/00007632-199001000-00004

    Article  CAS  PubMed  Google Scholar 

  16. Budu A, Sims-Williams H, Radatz M, Bacon A, Bhattacharyya D, Athanassacopoulos M, Ivanov M (2020) Comparison of navigated versus fluoroscopic-guided pedicle screw placement accuracy and complication rate. World Neurosurg 144:e541–e545. https://doi.org/10.1016/j.wneu.2020.08.207

    Article  PubMed  Google Scholar 

  17. Dorilio J, Utah N, Dowe C, Avrumova F, Alicea D, Brecevich A, Callanan T, Sama A, Lebl DR, Abjornson C, Cammisa FP (2021) Comparing the efficacy of radiation free machine-vision image-guided surgery with traditional 2-dimensional fluoroscopy: a randomized, single-center study. HSS J Musculoskelet J Hosp Spec Surg 17:274–280. https://doi.org/10.1177/15563316211029837

    Article  Google Scholar 

  18. Heller JG, Carlson GD, Abitbol J-J, Garfin SR (1991) Anatomic comparison of the Roy–Camille and Magerl techniques for screw placement in the lower cervical spine. Spine 16:S552

    Article  CAS  PubMed  Google Scholar 

  19. Hlubek RJ, Bohl MA, Cole TS, Morgan CD, Xu DS, Chang SW, Turner JD, Kakarla UK (2018) Safety and accuracy of freehand versus navigated C2 pars or pedicle screw placement. Spine J 18:1374–1381. https://doi.org/10.1016/j.spinee.2017.12.003

    Article  PubMed  Google Scholar 

  20. Ishikawa Y, Kanemura T, Yoshida G, Ito Z, Muramoto A, Ohno S (2010) Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement: Clinical article. J Neurosurg Spine 13:606–611. https://doi.org/10.3171/2010.5.SPINE09993

    Article  PubMed  Google Scholar 

  21. Learch TJ, Massie JB, Pathria MN, Ahlgren BA, Garfin SR (2004) Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: a proposed systematic approach to improve accuracy of interpretation. Spine 29:767–773. https://doi.org/10.1097/01.BRS.0000112071.69448.A1

    Article  PubMed  Google Scholar 

  22. Lee JS, Son DW, Lee SH, Ki SS, Lee SW, Song GS (2020) Comparative analysis of surgical outcomes of C1–2 fusion spine surgery between intraoperative computed tomography image based navigation-guided operation and fluoroscopy-guided operation. J Korean Neurosurg Soc 63:237–247. https://doi.org/10.3340/jkns.2019.0172

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Tian W, Liu B, Li Q, Hu H, Li Z, Yang Q, Lü Y, Sun Y, (2010) Comparison of the clinical accuracy of cervical (C2–C7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional C-arm navigation. Chin Med J (Engl) 123:2995–2998

    PubMed  Google Scholar 

  24. Mirza SK, Wiggins GC, Kuntz C, York JE, Bellabarba C, Knonodi MA, Chapman JR, Shaffrey CI (2003) Accuracy of thoracic vertebral body screw placement using standard fluoroscopy, fluoroscopic image guidance, and computed tomographic image guidance: a cadaver study. Spine 28:402–413. https://doi.org/10.1097/01.BRS.0000048461.51308.CD

    Article  PubMed  Google Scholar 

  25. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2–18. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakashima H, Sato K, Ando T, Inoh H, Nakamura H (2009) Comparison of the percutaneous screw placement precision of isocentric C-arm 3-dimensional fluoroscopy-navigated pedicle screw implantation and conventional fluoroscopy method with minimally invasive surgery. J Spinal Disord Tech 22:468–472. https://doi.org/10.1097/BSD.0b013e31819877c8

    Article  PubMed  Google Scholar 

  27. Noshchenko A, Ch C, Zaghloul K, Lindley E, Kleck C, Burger E, Patel V (2018) Pedicle screw placement assisted by 3D imaging (O-arm system with StealthStation® software) versus free-hand technique for multilevel posterior thoracolumbar fusion. Curr Orthop Pract 29:1. https://doi.org/10.1097/BCO.0000000000000601

    Article  Google Scholar 

  28. Silbermann J, Riese F, Allam Y, Reichert T, Koeppert H, Gutberlet M (2011) Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J 20:875–881. https://doi.org/10.1007/s00586-010-1683-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu H, Gao Z, Wang J, Li Y, Xia P, Jiang R (2010) Pedicle screw placement in the thoracic spine: a randomized comparison study of computer-assisted navigation and conventional techniques. Chin J Traumatol 13:201–205

    PubMed  Google Scholar 

  30. Yson SC, Sembrano JN, Sanders PC, Santos ERG, Ledonio CGT, Polly DW (2013) Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm). Comput Navig: Spine 38:E251–E258. https://doi.org/10.1097/BRS.0b013e31827ecbf1

    Article  Google Scholar 

  31. Melsen WG, Bootsma MCJ, Rovers MM, Bonten MJM (2014) The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin Microbiol Infect 20:123–129. https://doi.org/10.1111/1469-0691.12494

    Article  CAS  PubMed  Google Scholar 

  32. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Balestrino A, Gondar R, Jannelli G, Zona G, Tessitore E (2021) Surgical challenges in posterior cervicothoracic junction instrumentation. Neurosurg Rev 44:3447–3458. https://doi.org/10.1007/s10143-021-01520-6

    Article  PubMed  Google Scholar 

  34. Bertram U, Schmidt TP, Clusmann H, Albanna W, Herren C, Riabikin A, Mueller CA, Blume C (2021) Intraoperative computed tomography-assisted spinal navigation in dorsal cervical instrumentation: a prospective study on accuracy regarding different pathologies and screw types. World Neurosurg 149:e378–e385. https://doi.org/10.1016/j.wneu.2021.02.014

    Article  PubMed  Google Scholar 

  35. Fomekong E, Pierrard J, Raftopoulos C (2018) Comparative cohort study of percutaneous pedicle screw implantation without versus with navigation in patients undergoing surgery for degenerative lumbar disc disease. World Neurosurg 111:e410–e417. https://doi.org/10.1016/j.wneu.2017.12.080

    Article  PubMed  Google Scholar 

  36. Luther N, Iorgulescu JB, Geannette C, Gebhard H, Saleh T, Tsiouris AJ, Härtl R (2015) Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws: screw accuracy, screw size, and the complexity of surgery. J Spinal Disord Tech 28:E298–E303. https://doi.org/10.1097/BSD.0b013e31828af33e

    Article  PubMed  Google Scholar 

  37. Wu M-H, Dubey NK, Li Y-Y, Lee C-Y, Cheng C-C, Shi C-S, Huang T-J (2017) Comparison of minimally invasive spine surgery using intraoperative computed tomography integrated navigation, fluoroscopy, and conventional open surgery for lumbar spondylolisthesis: a prospective registry-based cohort study. Spine J 17:1082–1090. https://doi.org/10.1016/j.spinee.2017.04.002

    Article  PubMed  Google Scholar 

  38. Crawford BD, Nchako CM, Rebehn KA, Israel H, Place HM (2022) Transpedicular screw placement accuracy using the o-arm versus freehand technique at a single institution. Glob Spine J 12:447–451. https://doi.org/10.1177/2192568220956979

    Article  Google Scholar 

  39. Hiyama A, Katoh H, Nomura S, Sakai D, Watanabe M (2021) Intraoperative computed tomography-guided navigation versus fluoroscopy for single-position surgery after lateral lumbar interbody fusion. J Clin Neurosci 93:75–81. https://doi.org/10.1016/j.jocn.2021.08.023

    Article  PubMed  Google Scholar 

  40. Houten JK, Nasser R, Baxi N (2012) Clinical assessment of percutaneous lumbar pedicle screw placement using the O-arm multidimensional surgical imaging system. Neurosurgery 70:990–995. https://doi.org/10.1227/NEU.0b013e318237a829

    Article  PubMed  Google Scholar 

  41. Ramos RDLG, Echt M, Benton JA, Gelfand Y, Longo M, Yanamadala V, Yassari R (2020) Accuracy of freehand versus navigated thoracolumbar pedicle screw placement in patients with metastatic tumors of the spine. J Korean Neurosurg Soc 63:777–783. https://doi.org/10.3340/jkns.2020.0001

    Article  CAS  PubMed Central  Google Scholar 

  42. Shin M-H, Hur J-W, Ryu K-S, Park C-K (2015) Prospective comparison study between the fluoroscopy-guided and navigation coupled with O-arm–guided pedicle screw placement in the thoracic and lumbosacral spines. J Spinal Disord Tech 28:E347–E351. https://doi.org/10.1097/BSD.0b013e31829047a7

    Article  PubMed  Google Scholar 

  43. Tanaka M, Kadiri V, Sonawane S, Uotani K, Arataki S, Fujiwara Y, Oda Y, Yamauchi T, Takigawa T (2021) Comparative evaluation of screw accuracy and complications of new C-arm free O-arm navigated minimally invasive cervical pedicle screw fixation (MICEPS) with conventional cervical screw fixation. Interdiscip Neurosurg 25:101278. https://doi.org/10.1016/j.inat.2021.101278

    Article  Google Scholar 

  44. Tow BP, Yue WM, Srivastava A, Lai JM, Guo CM, Wearn Peng BC, Chen JLT, Yew AKS, Seng C, Tan SB (2015) Does navigation improve accuracy of placement of pedicle screws in single-level lumbar degenerative spondylolisthesis?: A comparison between free-hand and three-dimensional O-arm navigation techniques. J Spinal Disord Tech 28:E472–E477. https://doi.org/10.1097/BSD.0b013e3182a9435e

    Article  Google Scholar 

  45. Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4500 screws. Eur Spine J 22:654–660. https://doi.org/10.1007/s00586-012-2509-3

    Article  PubMed  Google Scholar 

  46. Yang YL, Zhou DS, He JL (2013) Comparison of isocentric C-Arm 3-dimensional navigation and conventional fluoroscopy for C1 lateral mass and C2 pedicle screw placement for atlantoaxial instability. J Spinal Disord Tech 26:127–134. https://doi.org/10.1097/BSD.0b013e31823d36b6

    Article  PubMed  Google Scholar 

  47. Yang P, Chen K, Zhang K, Sun J, Yang H, Mao H (2020) Percutaneous short-segment pedicle instrumentation assisted with O-arm navigation in the treatment of thoracolumbar burst fractures. J Orthop Transl 21:1–7. https://doi.org/10.1016/j.jot.2019.11.002

    Article  Google Scholar 

  48. Arab A, Alkherayf F, Sachs A, Wai E (2018) Use of 3D navigation in subaxial cervical spine lateral mass screw insertion. J Neurol Surg Rep 79:e1–e8. https://doi.org/10.1055/s-0038-1624574

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO (2010) Intraoperative computed tomography image–guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus 28:E11. https://doi.org/10.3171/2010.1.FOCUS09275

    Article  PubMed  Google Scholar 

  50. Xu Y-F, Zhang Q, Le X-F, Liu B, He D, Sun Y-Q, Liu Y-J, Yuan Q, Lang Z, Han X-G, Tian W (2019) Comparison of the one-time accuracy of simulated freehand and navigation simulated pedicle screw insertion. World Neurosurg 128:e347–e354. https://doi.org/10.1016/j.wneu.2019.04.151

    Article  PubMed  Google Scholar 

  51. Rampersaud YR, Lee K-S (2007) Fluoroscopic computer-assisted pedicle screw placement through a mature fusion mass: an assessment of 24 consecutive cases with independent analysis of computed tomography and clinical data. Spine 32:217–222. https://doi.org/10.1097/01.brs.0000251751.51936.3f

    Article  PubMed  Google Scholar 

  52. Kim BD, Hsu WK, De Oliveira GS, Saha S, Kim JYS (2014) Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: an analysis of 4588 surgical cases. Spine 39:510–520. https://doi.org/10.1097/BRS.0000000000000163

    Article  PubMed  Google Scholar 

  53. Bible JE, Mirza M, Knaub MA (2018) Blood-loss management in spine surgery. J Am Acad Orthop Surg 26:35–44. https://doi.org/10.5435/JAAOS-D-16-00184

    Article  PubMed  Google Scholar 

  54. Zheng F, Cammisa FP, Sandhu HS, Girardi FP, Khan SN (2002) Factors predicting hospital stay, operative time, blood loss, and transfusion in patients undergoing revision posterior lumbar spine decompression, fusion, and segmental instrumentation. Spine 27:818–824. https://doi.org/10.1097/00007632-200204150-00008

    Article  PubMed  Google Scholar 

  55. Tian W, Liu B, He D, Liu Y, Han X, Zhao J, Fan M, International Society for Computer Assisted Orthopaedic Surgery (2020) Guidelines for navigation-assisted spine surgery. Front Med 14:518–527. https://doi.org/10.1007/s11684-020-0775-8

    Article  Google Scholar 

  56. Malham GM, Wells-Quinn T (2019) What should my hospital buy next?—Guidelines for the acquisition and application of imaging, navigation, and robotics for spine surgery. J Spine Surg 5:155–165. https://doi.org/10.21037/jss.2019.02.04

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John-Peter Bonello.

Ethics declarations

Conflict of interest

None.

Relevant financial disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 570 KB)

Supplementary file2 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonello, JP., Koucheki, R., Abbas, A. et al. Comparison of major spine navigation platforms based on key performance metrics: a meta-analysis of 16,040 screws. Eur Spine J 32, 2937–2948 (2023). https://doi.org/10.1007/s00586-023-07865-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07865-4

Keywords

Navigation