Skip to main content

Advertisement

Log in

The neuro-protective role of telomerase via TERT/TERF-2 in the acute phase of spinal cord injury

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the interaction of telomerase activity and telomere length on neuro-protection or neuro-degeneration effects after spinal cord injury (SCI).

Methods

A contusive SCI model was developed using 56 Sprague–Dawley rats. Seven rats were allocated into acute injury phase groups (1, 3, 8, 24, and 48 h), and sub-acute and chronic injury phase groups (1, 2, and 4 weeks). Telomerase activity was assessed by telomerase reverse transcriptase (TERT) and telomeric repeat binding factor-2 (TERF-2). Differentiation of activated neural stem cells was investigated by co-expression of neuronal/glial cell markers. Apoptosis expression was also investigated by caspase-3, 8, and 9 using terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Immunofluorescence staining and western blotting were performed for quantitative analyses.

Results

Expression of TERT increased gradually until 24 h post-injury, and was decreased following SCI (P < 0.05). TERF-2 also was increased following SCI until 24 h post-injury and then decreased with time (P < 0.05). Co-localization of TERT and TERF-2 was higher at 24 h post-injury. High expression of TERT was seen in neurons (Neu N Ab), however, expression of TERT was relatively lower in astrocytes and oligodendrocytes. Apoptosis analysis showed persistent high expression of caspases-3, -9, and -8 during the observation period.

Conclusions

Increased TERT and TERF-2 activity were noted 24 h post-injury in the acute phase of SCI with TERF-2 maintaining telomeric-repeat length. Our results suggest that increased activity of telomere maintenance may be related to neuro-protective mechanisms against subsequent apoptosis resulting from DNA damage after acute SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seo JY, Kim YH, Kim JW, Kim SI, Ha KY (2015) Effects of therapeutic hypothermia on apoptosis and autophagy after spinal cord injury in rats. Spine (Phila Pa 1976) 40:883–890. https://doi.org/10.1097/brs.0000000000000845

    Article  PubMed  Google Scholar 

  2. Ha KY, Kim YH (2008) Neuroprotective effect of moderate epidural hypothermia after spinal cord injury in rats. Spine (Phila Pa 1976) 33:2059–2065. https://doi.org/10.1097/BRS.0b013e31818018f6

    Article  CAS  PubMed  Google Scholar 

  3. Multani AS, Ozen M, Narayan S, Kumar V, Chandra J, McConkey DJ, Newman RA, Pathak S (2000) Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia 2:339–345. https://doi.org/10.1038/sj.neo.7900105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niu C, Yip HK (2011) Neuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons. J Neuropathol Exp Neurol 70:634–652. https://doi.org/10.1097/NEN.0b013e318222b97b

    Article  CAS  PubMed  Google Scholar 

  5. Tao X, Ming-Kun Y, Wei-Bin S, Hai-Long G, Rui K, Lai-Yong T (2013) Role of telomerase reverse transcriptase in glial scar formation after spinal cord injury in rats. Neurochem Res 38:1914–1920. https://doi.org/10.1007/s11064-013-1097-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turner KJ, Vasu V, Griffin DK (2019) Telomere biology and human phenotype. Cells 8:73. https://doi.org/10.3390/cells8010073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mukherjee AK, Sharma S, Sengupta S, Saha D, Kumar P, Hussain T, Srivastava V, Roy SD, Shay JW, Chowdhury S (2018) Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends. PLoS Genet 14:e1007782. https://doi.org/10.1371/journal.pgen.1007782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding D, Zhou J, Wang M, Cong YS (2013) Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J 280:3205–3211. https://doi.org/10.1111/febs.12258

    Article  CAS  PubMed  Google Scholar 

  9. Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG, Herbig U, Santos JH (2010) A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell 9:203–219. https://doi.org/10.1111/j.1474-9726.2010.00551.x

    Article  CAS  PubMed  Google Scholar 

  10. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460:66–72. https://doi.org/10.1038/nature08137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365. https://doi.org/10.1038/nature09787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G, Saretzki GC (2013) Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS One 8:e52989. https://doi.org/10.1371/journal.pone.0052989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cicconi A, Chang S (2020) Shelterin and the replisome: at the intersection of telomere repair and replication. Curr Opin Genet Dev 60:77–84. https://doi.org/10.1016/j.gde.2020.02.016

    Article  CAS  PubMed  Google Scholar 

  14. La Torre D, Conti A, Aguennouz MH, De Pasquale MG, Romeo S, Angileri FF, Cardali S, Tomasello C, Alafaci C, Germanò A (2013) Telomere length modulation in human astroglial brain tumors. PLoS One 8:e64296. https://doi.org/10.1371/journal.pone.0064296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grammatikakis I, Zhang P, Mattson MP, Gorospe M (2016) The long and the short of TRF2 in neurogenesis. Cell Cycle 15:3026–3032. https://doi.org/10.1080/15384101.2016.1222339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. https://doi.org/10.1101/gad.1346005

    Article  CAS  PubMed  Google Scholar 

  17. Rai R, Chen Y, Lei M, Chang S (2016) TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun 7:10881. https://doi.org/10.1038/ncomms10881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89:911–920. https://doi.org/10.3171/jns.1998.89.6.0911

    Article  CAS  PubMed  Google Scholar 

  19. Li GL, Brodin G, Farooque M, Funa K, Holtz A, Wang WL, Olsson Y (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55:280–289. https://doi.org/10.1097/00005072-199603000-00003

    Article  CAS  PubMed  Google Scholar 

  20. Lee JS, Jeong SW, Cho SW, Juhn JP, Kim KW (2015) Relationship between initial telomere length, initial telomerase activity, age, and replicative capacity of nucleus pulposus chondrocytes in human intervertebral discs: what is a predictor of replicative potential? PLoS One 10:e0144177. https://doi.org/10.1371/journal.pone.0144177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng A, Shin-ya K, Wan R, Tang SC, Miura T, Tang H, Khatri R, Gleichman M, Ouyang X, Liu D, Park HR, Chiang JY, Mattson MP (2007) Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci 27:3722–3733. https://doi.org/10.1523/jneurosci.0590-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. González-Giraldo Y, Forero DA, Echeverria V, Gonzalez J, Ávila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Neuroprotective effects of the catalytic subunit of telomerase: a potential therapeutic target in the central nervous system. Ageing Res Rev 28:37–45. https://doi.org/10.1016/j.arr.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  23. Sobrido-Cameán D, Barreiro-Iglesias A (2018) Role of caspase-8 and fas in cell death after spinal cord injury. Front Mol Neurosci 11:101. https://doi.org/10.3389/fnmol.2018.00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denchi EL (2009) Give me a break: how telomeres suppress the DNA damage response. DNA Repair (Amst) 8:1118–1126. https://doi.org/10.1016/j.dnarep.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  25. Lobanova A, She R, Pieraut S, Clapp C, Maximov A, Denchi EL (2017) Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons. Genes Dev 31:639–647. https://doi.org/10.1101/gad.295402.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim JW, Ha KY, Molon JN, Kim YH (2013) Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation. Spine (Phila Pa 1976) 38:E1065-1074. https://doi.org/10.1097/BRS.0b013e31829839fa

    Article  PubMed  Google Scholar 

  27. Lee JY, Ha KY, Kim JW, Seo JY, Kim YH (2014) Does extracorporeal shock wave introduce alteration of microenvironment in cell therapy for chronic spinal cord injury? Spine (Phila Pa 1976) 39:E1553-1559. https://doi.org/10.1097/brs.0000000000000626

    Article  PubMed  Google Scholar 

  28. Klapper W, Shin T, Mattson MP (2001) Differential regulation of telomerase activity and TERT expression during brain development in mice. J Neurosci Res 64:252–260. https://doi.org/10.1002/jnr.1073

    Article  CAS  PubMed  Google Scholar 

  29. Fu W, Killen M, Culmsee C, Dhar S, Pandita TK, Mattson MP (2000) The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survival-promoting function. J Mol Neurosci 14:3–15. https://doi.org/10.1385/jmn:14:1-2:003

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Qu Y, Chen D, Zhang L, Zhao F, Luo L, Pan L, Hua J, Mu D (2013) The neuroprotective role and mechanisms of TERT in neurons with oxygen–glucose deprivation. Neuroscience 252:346–358. https://doi.org/10.1016/j.neuroscience.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  31. Spilsbury A, Miwa S, Attems J, Saretzki G (2015) The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J Neurosci 35:1659–1674. https://doi.org/10.1523/jneurosci.2925-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruis P, Van Ly D, Borel V, Kafer GR, McCarthy A, Howell S, Blassberg R, Snijders AP, Briscoe J, Niakan KK, Marzec P, Cesare AJ, Boulton SJ (2021) TRF2-independent chromosome end protection during pluripotency. Nature 589:103–109. https://doi.org/10.1038/s41586-020-2960-y

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR 3rd, Denchi EL (2013) A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494:502–505. https://doi.org/10.1038/nature11873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarek G, Vannier JB, Panier S, Petrini JHJ, Boulton SJ (2015) TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol Cell 57:622–635. https://doi.org/10.1016/j.molcel.2014.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feuerhahn S, Chen LY, Luke B, Porro A (2015) No DDRama at chromosome ends: TRF2 takes centre stage. Trends Biochem Sci 40:275–285. https://doi.org/10.1016/j.tibs.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  36. Benarroch-Popivker D, Pisano S, Mendez-Bermudez A, Lototska L, Kaur P, Bauwens S, Djerbi N, Latrick CM, Fraisier V, Pei B, Gay A, Jaune E, Foucher K, Cherfils-Vicini J, Aeby E, Miron S, Londoño-Vallejo A, Ye J, Le Du MH, Wang H, Gilson E, Giraud-Panis MJ (2016) TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol Cell 61:274–286. https://doi.org/10.1016/j.molcel.2015.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao F, Qu Y, Xiong T, Duan Z, Ye Q, Mu D (2012) The neuroprotective role of TERT via an antiapoptotic mechanism in neonatal rats after hypoxia-ischemia brain injury. Neurosci Lett 515:39–43. https://doi.org/10.1016/j.neulet.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  38. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9(Suppl 2):S425-442

    PubMed  Google Scholar 

Download references

Funding

This research was supported by the 2017–2018 Korea Medical Institute Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.G.C., J.W.K, and K.Y.H.; Methodology, D.G.C., and J.W.K.; Validation, J.W.K., and H.J.K.; Formal analysis, J.W.K. and H.J.K.; Investigation, D.G.C, J.W.K, H.J.K, and K.Y.H.; Writing—Original Draft, D.G.C, and J.W.K.; Writing—Review & Editing, H.J.K., Y.H.K., S.I.K. and K.Y.H.; Funding Acquisition, H.K.Y.; Resources, D.G.C., J.W.K, and K.Y.H.; Supervision, K.Y.H.

Corresponding author

Correspondence to Kee-Yong Ha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures involving animals were in compliance with the Laboratory Animal Welfare Act and the Guidelines and Policies for Rodent Survival Surgery, as required by the Animal Studies Committee of the Catholic University of Korea (IACUC Approval No. 2014-0192-02).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, DG., Kim, JW., Kim, H.J. et al. The neuro-protective role of telomerase via TERT/TERF-2 in the acute phase of spinal cord injury. Eur Spine J 32, 2431–2440 (2023). https://doi.org/10.1007/s00586-023-07561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07561-3

Keywords

Navigation