Skip to main content
Log in

Factors influencing cage subsidence in anterior cervical corpectomy and discectomy: a systematic review

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Various factors have been examined in relation to cage subsidence risk, including cage material, cage geometry, bone mineral density, device type, surgical level, bone graft, and patient age. The present study aims to compare and synthesize the literature of both clinical and biomechanical studies to evaluate and present the factors associated with cage subsidence.

Methods

A comprehensive search of the literature from January 2003 to December 2021 was conducted using the PubMed and ScienceDirect databases by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Following the screening for inclusion and exclusion criteria, a total of 49 clinical studies were included. Correlations between clinical and biomechanical studies are also discussed.

Results

Patients treated with the cage and plate combination had a lower subsidence rate than patients with the stand-alone cage. Overall, Polyetheretherketone material was shown to have a lower subsidence rate than titanium and other materials. The subsidence rate was also higher when the surgery was performed at levels C5–C7 than at levels C2–C5. No significant correlation was found between age and cage subsidence clinically.

Conclusions

Cage subsidence increases the stress on the anterior fixation system and may cause biomechanical instability. Severe cage subsidence decreases the Cobb angle and intervertebral height, which may cause destabilization of the implant system, such as screw/plate loosening or breakage of the screw/plate. Various factors have been shown to influence the risk of cage subsidence. Examining clinical research alongside biomechanical studies offers a more comprehensive understanding of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACDF:

Anterior cervical discectomy and fusion

ACCF:

Anterior cervical corpectomy and fusion

PEEK:

Polyetheretherketone

PMMA:

Poly-methyl-methacrylate

TMC:

Titanium mesh cage

BMD:

Bone mineral density

FEA:

Finite element analysis

References

  1. Hamada S, Abou-Zeid A (2015) Evaluation of subsidence in stand-alone cervical cage: incidence, risk factors and effects on clinical and radiological picture. Egypt Spine J 14:24–31. https://doi.org/10.21608/ESJ.2015.3953

    Article  Google Scholar 

  2. Yang JJ, Yu CH, Chang BS et al (2011) Subsidence and nonunion after anterior cervical interbody fusion using a stand-alone polyetheretherketone (PEEK) cage. Clin Orthop Surg 3:16–23. https://doi.org/10.4055/CIOS.2011.3.1.16

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartels RHMA, Donk RD, Feuth T (2006) Subsidence of stand-alone cervical carbon fiber cages. Neurosurgery 58:502–507. https://doi.org/10.1227/01.NEU.0000197258.30821.50

    Article  PubMed  Google Scholar 

  4. Pinder EM, Sharp DJ (2016) Cage subsidence after anterior cervical discectomy and fusion using a cage alone or combined with anterior plate fixation. J Orthop Surg 24:97–100. https://doi.org/10.1177/230949901602400122

    Article  CAS  Google Scholar 

  5. Kao TH, Wu CH, Chou YC et al (2014) Risk factors for subsidence in anterior cervical fusion with stand-alone polyetheretherketone (PEEK) cages: a review of 82 cases and 182 levels. Arch Orthop Trauma Surg 134:1343–1351. https://doi.org/10.1007/S00402-014-2047-Z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yson SC, Sembrano JN, Santos ERG (2017) Comparison of allograft and polyetheretherketone (PEEK) cage subsidence rates in anterior cervical discectomy and fusion (ACDF). J Clin Neurosci 38:118–121. https://doi.org/10.1016/J.JOCN.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Li J, Lin H et al (2018) A comparison of a self-locking stand-alone cage and anterior cervical plate for ACDF: minimum 3-year assessment of radiographic and clinical outcomes. Clin Neurol Neurosurg 170:73–78. https://doi.org/10.1016/J.CLINEURO.2018.04.033

    Article  PubMed  Google Scholar 

  8. de Leo-Vargas RA, Muñoz-Romero I, Mondragón-Soto MG, Martínez-Anda JJ (2019) Locking stand-alone cage constructs for the treatment of cervical spine degenerative disease. Asian Spine J 13:630–637. https://doi.org/10.31616/ASJ.2018.0234

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jianxin W, Xiaojian Y (2009) Anatomy-related risk factors in Harm’s mesh subsidence in cervical reconstruction after one-level corpectomy. J Med Coll PLA 24:228–234. https://doi.org/10.1016/S1000-1948(09)60042-3

    Article  Google Scholar 

  10. Zajonz D, Franke AC, der von Höh N et al (2014) Is the radiographic subsidence of stand-alone cages associated with adverse clinical outcomes after cervical spine fusion? An observational cohort study with 2-year follow-up outcome scoring. Patient Saf Surg 8:1–9. https://doi.org/10.1186/S13037-014-0043-4

    Article  Google Scholar 

  11. Sun J, Wang Q, Cai D et al (2021) A lattice topology optimization of cervical interbody fusion cage and finite element comparison with ZK60 and Ti-6Al-4V cages. BMC Musculoskelet Disord 22:1–14. https://doi.org/10.1186/S12891-021-04244-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park JY, Choi KY, Moon BJ et al (2016) Subsidence after single-level anterior cervical fusion with a stand-alone cage. J Clin Neurosci 33:83–88. https://doi.org/10.1016/J.JOCN.2016.01.042

    Article  PubMed  Google Scholar 

  13. Yamagata T, Takami T, Uda T et al (2012) Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: cage subsidence and cervical alignment. J Clin Neurosci 19:1673–1678. https://doi.org/10.1016/J.JOCN.2011.11.043

    Article  PubMed  Google Scholar 

  14. Igarashi H, Hoshino M, Omori K et al (2019) Factors influencing interbody cage subsidence following anterior cervical discectomy and fusion

  15. Song KJ, Choi BW, Ham DH, Kim HJ (2020) Prognosis of hardware-related problems in anterior cervical discectomy and fusion with cage and plate constructs. World Neurosurg 134:e249–e255. https://doi.org/10.1016/j.wneu.2019.10.042

    Article  PubMed  Google Scholar 

  16. Smith GW, Robinson RA (1958) The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Jt Surg Am 40-A:607–624. https://doi.org/10.2106/00004623-195840030-00009

    Article  CAS  Google Scholar 

  17. Cloward RB (1958) The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602–617. https://doi.org/10.3171/JNS.1958.15.6.0602

    Article  CAS  PubMed  Google Scholar 

  18. Weber MH, Fortin M, Shen J et al (2016) Graft subsidence and revision rates following anterior cervical corpectomy a clinical study comparing different interbody cages

  19. Börm W, Seitz K (2004) Use of cervical stand-alone cages. Eur Spine J 13:474–475. https://doi.org/10.1007/S00586-004-0707-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kang J-S, Oh S-H, Cho P-G (2019) Subsidence after anterior cervical interbody fusion using a zero-profile device. Nerve 5:33–40. https://doi.org/10.21129/nerve.2019.5.2.33

    Article  Google Scholar 

  21. Ji C, Yu S, Yan N et al (2020) Risk factors for subsidence of titanium mesh cage following single-level anterior cervical corpectomy and fusion. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-019-3036-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klingler JH, Krüger MT, Sircar R et al (2014) PEEK cages versus PMMA spacers in anterior cervical discectomy: comparison of fusion, subsidence, sagittal alignment, and clinical outcome with a minimum 1-year follow-up. Sci World J. https://doi.org/10.1155/2014/398396

    Article  Google Scholar 

  23. Chiang MFTJHC et al (2004) Finite element analysis of cage subsidence in cervical interbody fusion. J Med Biol Eng 24:201–208

    Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group T (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ng EPL, Yip ASL, Wan KHM et al (2019) Stand-alone cervical cages in 2-level anterior interbody fusion in cervical spondylotic myelopathy: results from a minimum 2-year follow-up. Asian Spine J 13:225–232. https://doi.org/10.31616/ASJ.2018.0193

    Article  PubMed  Google Scholar 

  26. Han SY, Kim HW, Lee CY et al (2016) Stand-alone cages for anterior cervical fusion: Are there no problems? Korean J Spine 13:13–19. https://doi.org/10.14245/KJS.2016.13.1.13

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:1–9. https://doi.org/10.1186/1471-2474-13-172

    Article  CAS  Google Scholar 

  28. Nemoto O, Kitada A, Naitou S et al (2015) Stand-alone anchored cage versus cage with plating for single-level anterior cervical discectomy and fusion: a prospective, randomized, controlled study with a 2-year follow-up. Eur J Orthop Surg Traumatol 25:127–134. https://doi.org/10.1007/S00590-014-1547-4/FIGURES/4

    Article  Google Scholar 

  29. Hur JW, Ryu KS, Ahn S et al (2020) Comparative analysis of 2 different types of titanium mesh cage for single-level anterior cervical corpectomy and fusion in terms of postoperative subsidence and sagittal alignment. Clin Spine Surg 33:E8–E13. https://doi.org/10.1097/BSD.0000000000000938

    Article  PubMed  Google Scholar 

  30. Lu Y, Bao W, Wang Z et al (2018) Comparison of the clinical effects of zero-profile anchored spacer (ROI-C) and conventional cage-plate construct for the treatment of noncontiguous bilevel of cervical degenerative disc disease (CDDD): a minimum 2-year follow-up. Medicine 97:e9808. https://doi.org/10.1097/MD.0000000000009808

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maccormick AP, Sharma H (2020) Analysis of the variables affecting the incidence, location, and severity of cage subsidence following anterior cervical discectomy and fusion operation. Int J Spine Surg 14:896–900. https://doi.org/10.14444/7137

    Article  PubMed  Google Scholar 

  32. Kast E, Derakhshani S, Bothmann M, Oberle J (2009) Subsidence after anterior cervical inter-body fusion. A randomized prospective clinical trial. Neurosurg Rev 32:207–214. https://doi.org/10.1007/s10143-008-0168-y

    Article  PubMed  Google Scholar 

  33. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seaman S, Kerezoudis P, Bydon M et al (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci 44:23–29

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Wang X, Lu X et al (2013) Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J 22:1539–1546. https://doi.org/10.1007/s00586-013-2772-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liao JC, Niu CC, Chen WJ, Chen LH (2008) Polyetheretherketone (PEEK) cage filled with cancellous allograft in anterior cervical discectomy and fusion. Int Orthop 32:643–648. https://doi.org/10.1007/S00264-007-0378-X

    Article  PubMed  Google Scholar 

  37. Suess O, Schomaker M, Cabraja M et al (2017) Empty polyetheretherketone (PEEK) cages in anterior cervical diskectomy and fusion (ACDF) show slow radiographic fusion that reduces clinical improvement: results from the prospective multicenter “PIERCE-PEEK” study. Patient Saf Surg 11:1–12. https://doi.org/10.1186/S13037-017-0128-Y

    Article  Google Scholar 

  38. Pelletier MH, Cordaro N, Punjabi VM et al (2016) PEEK versus Ti interbody fusion devices resultant fusion, bone apposition, initial and 26-week biomechanics. Clin Spine Surg 29:E208–E214. https://doi.org/10.1097/BSD.0B013E31826851A4

    Article  PubMed  Google Scholar 

  39. Hee HT, Kundnani V (2010) Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. Spine J 10:66–69. https://doi.org/10.1016/J.SPINEE.2009.10.014

    Article  PubMed  Google Scholar 

  40. Castellvi AE, Castellvi A, Clabeaux DH (2012) Corpectomy with titanium cage reconstruction in the cervical spine. J Clin Neurosci 19:517–521. https://doi.org/10.1016/J.JOCN.2011.06.029

    Article  CAS  PubMed  Google Scholar 

  41. Lu T, Liu C, Yang B et al (2017) Single-level anterior cervical corpectomy and fusion using a new 3D-printed anatomy-adaptive titanium mesh cage for treatment of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: a retrospective case series study. Med Sci Monit 23:3106–3113. https://doi.org/10.12659/MSM.901993

    Article  Google Scholar 

  42. Noordhoek I, Koning MT, Jacobs WCH, Vleggeert-Lankamp CLA (2018) Incidence and clinical relevance of cage subsidence in anterior cervical discectomy and fusion: a systematic review. Acta Neurochir 160:873–880. https://doi.org/10.1007/S00701-018-3490-3

    Article  PubMed  Google Scholar 

  43. Kersten RFMR, van Gaalen SM, de Gast A, Öner FC (2015) Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 15:1446–1460. https://doi.org/10.1016/J.SPINEE.2013.08.030

    Article  PubMed  Google Scholar 

  44. McCaffrey K, McCaffrey MH, Pelletier MH et al (2021) Load sharing and endplate pressure distribution in anterior interbody fusion influenced by graft choice. World Neurosurg 146:e336–e340. https://doi.org/10.1016/J.WNEU.2020.10.084

    Article  PubMed  Google Scholar 

  45. Carpenter RD, Klosterhoff BS, Torstrick FB et al (2018) Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: a finite element analysis comparing titanium and PEEK. J Mech Behav Biomed Mater 80:68–76. https://doi.org/10.1016/J.JMBBM.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. An TY, Kim JY, Lee YS (2021) Risk factors and radiologic changes in subsidence after single-level anterior cervical corpectomy: a minimum follow-up of 2 years. Korean J Neurotrauma 17:126–135. https://doi.org/10.13004/KJNT.2021.17.E23

    Article  PubMed  PubMed Central  Google Scholar 

  47. Anderst WJ, Thorhauer ED, Lee JY et al (2011) Cervical spine bone mineral density as a function of vertebral level and anatomic location. Spine J 11:659–667. https://doi.org/10.1016/J.SPINEE.2011.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brenke C, Dostal M, Scharf J et al (2015) Influence of cervical bone mineral density on cage subsidence in patients following stand-alone anterior cervical discectomy and fusion. Eur Spine J 24:2832–2840. https://doi.org/10.1007/S00586-014-3725-9

    Article  PubMed  Google Scholar 

  49. Park JI, Cho DC, Kim KT, Sung JK (2013) Anterior cervical discectomy and fusion using a stand-alone polyetheretherketone cage packed with local autobone: assessment of bone fusion and subsidence. J Korean Neurosurg Soc 54:189–193. https://doi.org/10.3340/JKNS.2013.54.3.189

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suh PB, Puttlitz C, Lewis C et al (2017) The effect of cervical interbody cage morphology, material composition, and substrate density on cage subsidence. J Am Acad Orthop Surg 25:160–168. https://doi.org/10.5435/JAAOS-D-16-00390

    Article  PubMed  Google Scholar 

  51. Lim TH, Kwon H, Jeon CH et al (2001) Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine 26:951–956. https://doi.org/10.1097/00007632-200104150-00021

    Article  CAS  PubMed  Google Scholar 

  52. Yin M, Ma J, Huang Q et al (2016) The new Zero-P implant can effectively reduce the risk of postoperative dysphagia and complications compared with the traditional anterior cage and plate: a systematic review and meta-analysis. BMC Musculoskelet Disord 17:1–9. https://doi.org/10.1186/S12891-016-1274-6

    Article  Google Scholar 

  53. Lin M, Shapiro SZ, Doulgeris J et al (2021) Cage-screw and anterior plating combination reduces the risk of micromotion and subsidence in multilevel anterior cervical discectomy and fusion—a finite element study. Spine J 21:874–882. https://doi.org/10.1016/J.SPINEE.2021.01.015

    Article  PubMed  Google Scholar 

  54. Ouyang P, Lu T, He X et al (2019) Biomechanical comparison of integrated fixation cage versus anterior cervical plate and cage in anterior cervical corpectomy and fusion (ACCF): a finite element analysis. Med Sci Monit 25:1489–1498. https://doi.org/10.12659/MSM.913630

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Zhan Y, Yang H et al (2021) A novel anatomic titanium mesh cage for reducing the subsidence rate after anterior cervical corpectomy: a finite element study. Sci Rep 11:1–9. https://doi.org/10.1038/S41598-021-94787-0

    Article  Google Scholar 

  56. Liu N, Lu T, Wang Y et al (2019) Effects of new cage profiles on the improvement in biomechanical performance of multilevel anterior cervical corpectomy and fusion: a finite element analysis. World Neurosurg 129:e87–e96. https://doi.org/10.1016/J.WNEU.2019.05.037

    Article  PubMed  Google Scholar 

  57. Moussa A, Tanzer M, Pasini D (2018) Cervical fusion cage computationally optimized with porous architected Titanium for minimized subsidence. J Mech Behav Biomed Mater 85:134–151. https://doi.org/10.1016/J.JMBBM.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  58. Ryken TC, Heary RF, Matz PG et al (2009) Techniques for cervical interbody grafting. J Neurosurg Spine 11:203–220. https://doi.org/10.3171/2009.2.SPINE08723

    Article  PubMed  Google Scholar 

  59. Chau AMT, Mobbs RJ (2009) Bone graft substitutes in anterior cervical discectomy and fusion. Eur Spine J 18:449–464. https://doi.org/10.1007/S00586-008-0878-4

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shen J, Weber M, Hu S et al (2011) Graft subsidence following anterior cervical corpectomy: a clinical study comparing different interbody cages. The Spine J 11:E1239–E1245. https://doi.org/10.1016/J.SPINEE.2011.08.405

    Article  Google Scholar 

  61. Zhou J, Xia Q, Dong J et al (2011) Comparison of stand-alone polyetheretherketone cages and iliac crest autografts for the treatment of cervical degenerative disc diseases. Acta Neurochir 153:115–122. https://doi.org/10.1007/S00701-010-0821-4

    Article  PubMed  Google Scholar 

  62. Liu H, Ploumis A, Li C et al (2012) Polyetheretherketone cages alone with allograft for three-level anterior cervical fusion. ISRN Neurol 2012:1–5. https://doi.org/10.5402/2012/452703

    Article  Google Scholar 

  63. Silber JS, Anderson DG, Daffner SD et al (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139. https://doi.org/10.1097/00007632-200301150-00008

    Article  PubMed  Google Scholar 

  64. Manickam PS, Roy S, Shetty GM (2021) Biomechanical evaluation of a novel S-type, dynamic zero-profile cage design for anterior cervical discectomy and fusion with variations in bone graft shape: a finite element analysis. World Neurosurg 154:e199–e214. https://doi.org/10.1016/J.WNEU.2021.07.013

    Article  PubMed  Google Scholar 

  65. Wu J, Luo D, Ye X et al (2015) Anatomy-related risk factors for the subsidence of titanium mesh cage in cervical reconstruction after one-level corpectomy. Int J Clin Exp Med 8:7411

    Google Scholar 

  66. Lee YS, Kim YB, Park SW (2014) Risk factors for postoperative subsidence of single-level anterior cervical discectomy and fusion: the significance of the preoperative cervical alignment. Spine 39:1280–1287. https://doi.org/10.1097/BRS.0000000000000400

    Article  PubMed  Google Scholar 

  67. Nakanishi Y, Naito K, Yamagata T et al (2020) Safety of anterior cervical discectomy and fusion using titanium-coated polyetheretherketone stand-alone cages: multicenter prospective study of incidence of cage subsidence. J Clin Neurosci 74:47–54. https://doi.org/10.1016/J.JOCN.2020.01.056

    Article  CAS  PubMed  Google Scholar 

  68. Choudhury S, Raja D, Roy S, Datta S (2020) Stress analysis of different types of cages in cervical vertebrae: a finite element study. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/912/2/022025

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Boca Raton Regional Hospital Foundation (award # SP 19-579).

Author information

Authors and Affiliations

Authors

Contributions

UKD: Conception and Design, Literature search, Analysis and Interpretation of Data, Drafting the Article, Reviewed submitted version of manuscript. ELM: Drafting the Article, Critically revising the article. ML: Reviewed submitted version of manuscript. VH: Drafting the Article. TO: Reviewed submitted version of manuscript. C-TT: Study supervision, Conception and Design, Administrative/technical/material support, Reviewed submitted version of manuscript. FDV: Conception and Design, Reviewed submitted version of manuscript, Approved the final version of the manuscript on behalf of all authors.

Corresponding author

Correspondence to Frank D. Vrionis.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, U.K., Menzer, E.L., Lin, M. et al. Factors influencing cage subsidence in anterior cervical corpectomy and discectomy: a systematic review. Eur Spine J 32, 957–968 (2023). https://doi.org/10.1007/s00586-023-07530-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07530-w

Keywords

Navigation