Skip to main content
Log in

GAP score potential in predicting post-operative spinal mechanical complications: a systematic review of the literature

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

In 2017, the GAP score was proposed as a tool to reduce mechanical complications (MC) in adult spinal deformity (ASD) surgery: the reported MC rate for the GAP proportioned category was only 6%, which is clearly lower to the MC rate reported in the literature. The aim of this study is to analyse if the most recent literature confirms the promising results of the original article.

Materials and methods

Using the PRISMA flow chart, we reviewed the literature to analyse GAP score capacity in predicting MC occurrence. We included articles clearly reporting ASD surgery MC stratified by GAP categories and the score’s overall capacity to predict MC using the area under the curve (AUC). The quality of the included studies was evaluated using GRADE and MINORS systems.

Results

Eleven retrospective articles (1,517 patients in total) were included. The MC distribution per GAP category was as follows: GAP-P, 32.8%; GAP-MD, 42.3%; GAP-SD, 55.4%. No statistically significant difference was observed between the different categories using the Kruskal–Wallis test (p = 0.08) and the two-by-two Pearson-Chi square test (P Vs MD, p = 0.300; P Vs SD, p = 0.275; MD Vs SD, p = 0.137). The global AUC was 0.68 ± 0.2 (moderate accuracy). The included studies were of poor quality according to the GRADE system and had a high risk of bias based on the MINORS criteria.

Conclusion

The actual literature does not corroborate the excellent results reported by the original GAP score article. Further prospective studies, possibly stratified by type of MC and type of surgery, are necessary to validate this score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lord EL, Ayres E, Woo D, Vasquez-Montes D, Parekh Y, Jain D, Buckland A, Protopsaltis T (2021) The impact of global alignment and proportion score and bracing of proximal junctional kyphosis in adult spinal deformity. Global Spine J 12:219. https://doi.org/10.1177/21925682211001812

    Article  Google Scholar 

  2. Smith JS, Shaffrey CI, Ames CP, Lenke LG (2019) Treatment of adult thoracolumbar spinal deformity: past, present and future. J Neurosurg Spine 30(5):551–567. https://doi.org/10.3171/2019.1.SPINE181494

    Article  Google Scholar 

  3. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029. https://doi.org/10.1097/01.brs.0000179086.30449.96

    Article  Google Scholar 

  4. Fehlings MG, Tetreault L, Nater A et al (2015) The Aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery 77(Suppl4):S1–S5. https://doi.org/10.1227/NEU.0000000000000953

    Article  Google Scholar 

  5. Ames CP, Scheer JK, Lafage V, Smith JS, Bess S, Berven SH, Mundis GM, Sethi RK, Deinlein DA, Coe JD, Hey LA, Daubs MD (2016) Adult spinal deformity: epidemiology, health impact, evaluation and management. Spine Deform 4:310–322. https://doi.org/10.1016/j.jspd.2015.12.009

    Article  Google Scholar 

  6. Zanirato A, Damilano M, Formica M, Piazzolla A, Lovi A, Villafane JH, Berjano P (2018) Complications in adult spine deformity surgery: a systematic review of the recent literature reporting aggregated incidences. Eur Spine J 27(9):2272–2284. https://doi.org/10.1007/s00586-018-5535-y

    Article  Google Scholar 

  7. Formica M, Cavagnaro L, Zanirato A, Felli L, Formica C (2016) Proximal junctional spondylodiscitis after pedicle subtraction osteotomy. Spine J 16(2):e49-51. https://doi.org/10.1016/j.spinee.2015.09.050

    Article  Google Scholar 

  8. Bridwell KH, Glassman S, Horton W et al (2009) Does treatment (non-operative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine 34(20):2171–2178. https://doi.org/10.1097/BRS.0b013e3181a8fdc8

    Article  Google Scholar 

  9. Smith JS, Lafage V, Shaffrey CI et al (2016) Outcomes of operative and nonoperative treatment for adult spinal deformity: a prospective, multicenter, propensity-matched cohort assessment with minimum 2-year follow-up. Neurosurgery 78(6):851–861. https://doi.org/10.1227/NEU.0000000000001116

    Article  Google Scholar 

  10. Formica M, Quarto E, Zanirato A, Mosconi L, Lontaro-Baracchini M, Alessio-Mazzola M, Felli L (2021) ALIF in the correction of spinal sagittal misalignment: a systematic review of literature. Eur Spine J 30(1):50–62. https://doi.org/10.1007/s00586-020-06598-y

    Article  CAS  Google Scholar 

  11. Quarto E, Zanirato A, Ursino C, Traverso G, Russo A, Formica M (2021) Adult spinal deformity surgery: posterior three-column osteotomies vs anterior lordotic cages with posterior fusion. Complications, clinical and radiological results. A systematic review of the literature. Eur Spine J 30(11):3150–3161. https://doi.org/10.1007/s00586-021-06925-x

    Article  Google Scholar 

  12. Roussouly P, Pinheiro-Franco JL (2011) Sagittal parameters of the spine: biomechanical approach. Eur Spine J 20(Suppl 5):S578–S585. https://doi.org/10.1007/s00586-011-1924-1

    Article  Google Scholar 

  13. Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian H, Shaffrey C, Tribus C, Lafage V (2012) Scoliosis research society – Schwab adult spinal deformity classification: a validation study. Spine 37(12):1077–1082. https://doi.org/10.1097/BRS.0b013e31823e15e2

    Article  Google Scholar 

  14. Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A (2019) Sagittal balance of the spine. Eur Spine J 28(9):1889–1905. https://doi.org/10.1007/s00586-019-06083-1

    Article  Google Scholar 

  15. Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 25(11):3630–3637. https://doi.org/10.1007/s00586-016-4485-5

    Article  Google Scholar 

  16. Sebaaly A, Gehrchen M, Silvestre C, Kharrat K, Bari TJ, Kreichati G, Rizkallah M, Roussouly P (2020) Mechanical complications in adult spinal deformity and the effect of restoring the spinal shapes according to the Roussouly classifcation: a multicentric study. Eur spine J: Publ Eur Spine Soc, Eur Spin Deform Soc Eur Sec Cerv Spine Res Soc 29:904–913. https://doi.org/10.1007/s00586-019-06253-1

    Article  Google Scholar 

  17. Baum GR, Ha AS, Cerpa M, Zuckerman SL, Lin JD, Menger RP, Osorio JA, Morr S, Leung E, Lehman RA, Sardar Z, Lenke LG (2020) Does the global alignment and proportion score overestimate mechanical complications after adult spinal deformity correction? J Neurosurg Spine 34(1):1–7. https://doi.org/10.3171/2020.6.Spine20538

    Article  Google Scholar 

  18. Kawabata A, Yoshii T, Sakai K, Hirai T, Yuasa M, Inose H, Utagawa K, Hashimoto J, Matsukura Y, Tomori M, Torigoe I, Kusano K, Otani K, Mizuno K, Satoshi S, Kazuyuki F, Tomizawa S, Arai Y, Shindo S, Okawa A (2020) Identifcation of predictive factors for mechanical complications after adult spinal deformity surgery: a multi-institutional retrospective study. Spine 45:1185–1192. https://doi.org/10.1097/brs.0000000000003500

    Article  Google Scholar 

  19. Yilgor C, Sogunmez N, Boissiere L, Yavuz Y, Obeid I, Kleinstück F, Pérez-Grueso FJS, Acaroglu E, Haddad S, Mannion AF, Pellise F, Alanay A (2017) Global alignment and proportion (GAP) score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am 99:1661–1672. https://doi.org/10.2106/jbjs.16.01594

    Article  Google Scholar 

  20. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, Thomas J (2019) Updated guidance for trusted systematic reviews a new edition of the cochrane handbook for systematic reviews of interventions.Cochrane Database. Syst Rev 10:142. Doi: https://doi.org/10.1002/14651858.ED000142;

  21. Moher D, Liberati A, Tetzlaf J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  Google Scholar 

  22. OCEBM Levels of Evidence Working Group*. “The Oxford Levels of Evidence 2”. Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ ocebm-levels-of-evidence

  23. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, AlonsoCoello P, Schünemann HJ (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926

    Article  Google Scholar 

  24. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  Google Scholar 

  25. Bari TJ, Ohrt-Nissen S, Hansen LV, Dahl B, Gehrchen M (2019) Ability of the global alignment and proportion score to predict mechanical failure following adult spinal deformity surgery – validation in 149 patients with two-year follow-up. Spine Deform 7(2):331–337. https://doi.org/10.1016/j.jspd.2018.08.002

    Article  Google Scholar 

  26. Jacobs E, Van Royen BJ, Van Kujik SMJ, Merk JMR, Stadhouder A, Van Rhijn LW, Willems PC (2019) Prediction of mechanical complications in adult spinal deformity surgery-the GAP score versus the Schwab classification. Spine J 19(5):781–788. https://doi.org/10.1016/j.spinee.2018.11.013

    Article  Google Scholar 

  27. Gupta MC, Yilgor C, Moon HJ, Lertudomphonwanit T, Alanay A, Lenke L, Bridwell KH (2021) Evaluation of global alignment and proportion score in an independent database. Spine J 21(9):1549–1558. https://doi.org/10.1016/j.spinee.2021.04.004

    Article  Google Scholar 

  28. Kwan KYH, Lenke LG, Shaffrey CI, Carreon LY, Dahl BT, Fehlings MG et al (2021) Are higher global alignment and proportion scores associated with increased risks of mechanical complications after adult spinal deformity surgery ? An external validation. Clin Orthop Relat Res 479(2):312–320. https://doi.org/10.1097/CORR.0000000000001521

    Article  Google Scholar 

  29. Ham DW, Kim HJ, Choi JH, Park J, Lee J, Yeom JS (2021) Validity of the global alignment proportion (GAP) score in predicting mechanical complications after adult spinal deformity surgery in elderly patiens. Eur Spine J 30(5):1190–1198. https://doi.org/10.1007/s00586-021-06734-2

    Article  Google Scholar 

  30. Sun X, Sun W, Sun S, Hu H, Zhang S, Kong C, Lu S (2021) Which sagittal evaluation system can effectively predict mechanical complications in the treatment of elderly patients with adult degenerative scoliosis ? Roussouly classification or Global Alignment and Proportion (GAP) Score. J Orthop Surg Res 16(1):641. https://doi.org/10.1186/s13018-021-02786-8

    Article  Google Scholar 

  31. Yagi M, Daimon K, Hosogane N, Okada E, Suzuki S, Tsuji O et al (2021) Predictive probability of the global alignment and proportion score for the development of mechanical failure following adult spinal deformity surgery in Asian patients. Spine Spine (Phila Pa 1976) 46(2):80–86. https://doi.org/10.1097/BRS.0000000000003738

    Article  Google Scholar 

  32. Teles AR, Aldebeyan S, Aoude A, Swamy G, Nicholls FH, Thomas KC, Jacobs WB (2022) Mechanical complications in adult spinal deformity surgery : can spinal alignment explain everything ? Spine Spine (Phila Pa 1976) 47(1):1–9. https://doi.org/10.1097/BRS.0000000000004217

    Article  Google Scholar 

  33. Akobeng AK (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 96(5):644–647. https://doi.org/10.1111/j.1651-2227.2006.00178.x

    Article  Google Scholar 

  34. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein S (ed) The pediatric spine: principles and practice. Raven Press, pp 479–496

    Google Scholar 

  35. Amabile C, Le Huec JC, Skalli W (2016) Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J 27(2):458–466. https://doi.org/10.1007/s00586-016-4830-8

    Article  Google Scholar 

  36. Le Huec JC, Richards J, Tsoupras A, Price R, Leglise A, Faundez AA (2018) The mechanism in junctional failure of thoraco-lumbar fusion. Part I: Biomechanical analysis of mechanism responsible of vertebral overstress and description of the cervical inclination angle (CIA). Eur Spine J 27(Suppl 1):129–138. https://doi.org/10.1007/s00586-017-5425-8

    Article  Google Scholar 

  37. Faundez AA, Richards J, Maxy Price R, Leglise A, Le Huec JC (2018) The mechanism in junctional failure of thoraco-lumbar fusions. Part II: Analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown. Eur Spine J 27(Suppl 1):139–148. https://doi.org/10.1007/s00586-017-5426-7

    Article  Google Scholar 

  38. Lafage R, Schwab F, Challier V, Henry KJ, Gum J, Smith J et al (2016) Defining spino-pelvic alignment thresholds. should operative goals in adult spinal deformity surgery account fo age? Spine 41(1):62–68. https://doi.org/10.1097/BRS.0000000000001171

    Article  Google Scholar 

  39. Lafage R, Smith JS, Elysee J, Passias P, Bess S, Klineberg E et al (2022) Sagittal age-adjusted score (SAAS) for adult spinal deformity (ASD) more effectively predicts surgical outcomes and proximal junctional kyphosis than previous classifications. Spine Deformity 10(1):121–131. https://doi.org/10.1007/s43390-021-00397-1

    Article  Google Scholar 

  40. Jalai CM, Cruz DL, Diebo BG, Poorman G, Lafage R, Bess S et al (2017) Full-body analysis of age-adjusted alignment in adult spinal deformity patients and lower-limb compensation. Spine (Phila Pa 1976) 42(9):653–661. https://doi.org/10.1097/BRS.0000000000001863

    Article  Google Scholar 

  41. Iyer S, Lenke LG, Nemani VM, Fu M, Shifflett GD, Albert TJ, Sides BA, Metz LN, Cunningham ME, Kim HJ (2016) Variations in occipitocervical and cervicothoracic alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976) 41(23):1837–1844. https://doi.org/10.1097/BRS.0000000000001644

    Article  Google Scholar 

  42. Iyer S, Lenke LG, Nemani VM, Albert TJ, Sides BA, Metz LN, Cunningham ME, Kim HJ (2016) Variations in sagittal alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976) 41(23):1826–1836. https://doi.org/10.1097/BRS.0000000000001642

    Article  Google Scholar 

  43. Kim HJ, Bridwell KH, Lenke LG, Park MS, Song KS, Piyaskulkaew C, Chuntarapas T (2014) Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections. Spine (Phila Pa 1976) 39(9):576–580. https://doi.org/10.1097/BRS.0000000000000246

    Article  Google Scholar 

  44. Le Huec JC, Charosky S, Barrey C, Rigal J, Anouble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):S699–S703. https://doi.org/10.1007/s00586-011-1938-8

    Article  Google Scholar 

  45. Dial BL, Hills JM, Smith JS, Sardi JP, Lazaro B, Shaffery CI et al (2022) The impact of lumbar alignment targerts on mechanical complications after adult lumbar scoliosis surgery. Eur Spine J. https://doi.org/10.1007/s00586-022-07200-3

    Article  Google Scholar 

  46. Duan PG, Mummaneni PV, Rivera J, Guin JM, Wang M, Xi Z et al (2020) The association between lower Hounsfield units in the upper instrumented vertebra and proximal junctional kyphosis in adult spinal deformity surgery with a minimum 2-year follow-up. Neurosurg Focus 49(2):E7. https://doi.org/10.3171/2020.5.FOCUS20192

    Article  Google Scholar 

  47. Kim HJ, Dash A, Cunningham M, Schwab F, Dowdell J, Harrison J et al (2021) Patients with abnormal microarchitecture have an increased risk of early complications after spinal fusion surgery. Bone 143:115731. https://doi.org/10.1016/j.bone.2020.115731

    Article  Google Scholar 

  48. Jiang J, Teng Y, Fan Z, Khan S, Xia Y (2014) Does obesity affect the surgical outcome and complication rates of spinal surgery? A meta-analysis Clin Orthop Relat Res 472(3):968–975. https://doi.org/10.1007/s11999-013-3346-3

    Article  Google Scholar 

  49. Patel N, Bagan B, Vadera S, Maltenfort MG, Deutsch H, Vaccaro AR, Harrop J, Sharan A, Ratliff JK (2007) Obesity and spine surgery: relation to perioperative complications. J Neurosurg Spine 6(4):291–297. https://doi.org/10.3171/spi.2007.6.4.1

    Article  Google Scholar 

  50. Yadla S, Malone J, Campbell PG, Maltenfort MG, Harrop JS, Sharan AD, Vaccaro AR, Ratliff JK (2010) Obesity and spine surgery: reassessment based on a prospective evaluation of perioperative complications in elective degenerative thoracolumbar procedures. Spine J 10(7):581–587. https://doi.org/10.1016/j.spinee.2010.03.001

    Article  Google Scholar 

  51. Noh SH, Ha Y, Obeid I, Park JY, Kuh SU, Chin DK et al (2020) Modified global alignment and proportion scoring with body mass index and bone mineral density (GAPB) for improving predictions of mechanical complications after adult spinal deformity surgery. Spine J 20:776–784. https://doi.org/10.1016/j.spinee.2019.11.006

    Article  Google Scholar 

  52. He K, Head J, Mouchtouris N, Hines K, Shea P, Shmidt R et al (2020) The implications of paraspinal muscle atrophy in low back pain, thoracolumbar pathology, and clinical outcomes after spine surgery: a review of the literature. Global Spine J 10(5):657–666. https://doi.org/10.1177/2192568219879087

    Article  Google Scholar 

  53. Yagi M, Hosogane N, Watanabe K, Asazuma T, Matsumoto M (2016) The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J 16:451–458. https://doi.org/10.1016/j.spinee.2015.07.001

    Article  Google Scholar 

  54. Choi MK, Kim SB, Park CK, Malla HP, Kim SM (2017) Cross-sectional area of the lumbar spine trunk muscle and posterior lumbar interbody fusion rate: a retrospective study. Clin Spine Surg 30:E798–E803. https://doi.org/10.1097/BSD.0000000000000424

    Article  Google Scholar 

  55. Kim JY, Ryu DS, Paik HK et al (2016) Paraspinal muscle, facet joint, and disc problems: risk factors for adjacent segment degeneration after lumbar fusion. Spine J 16:867–875. https://doi.org/10.1016/j.spinee.2016.03.010

    Article  Google Scholar 

  56. Yagi M, Michikawa T, Hosogane N, Fujita N, Okada E, Suzuki S et al (2019) The 5-Item modified frailty index is predictive of severe adverse events in patients undergoing surgery for adult spinal deformity. Spine 44:E1083-1091. https://doi.org/10.1097/BRS.0000000000003063

    Article  Google Scholar 

  57. Yagi M, Michikawa T, Hosogane N, Fujita N, Okada E, Suzuki S et al (2018) Treatment of frailty does not improve complication rates in corrective surgery for adult spinal deformity. Spine 44(10):723–731. https://doi.org/10.1097/BRS.0000000000002929

    Article  Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

EQ and AZ, review, first draft, statistical analysis; MP, SV, FV and SB, data analysis and results writing; J-CLH and MF, final manuscript review and language editing.

Corresponding author

Correspondence to E. Quarto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No ethical approval was needed for this review.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quarto, E., Zanirato, A., Pellegrini, M. et al. GAP score potential in predicting post-operative spinal mechanical complications: a systematic review of the literature. Eur Spine J 31, 3286–3295 (2022). https://doi.org/10.1007/s00586-022-07386-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07386-6

Keywords

Navigation