Miller NH (2007) Genetics of familial idiopathic scoliosis. Clin Orthop Relat Res 462:6–10
PubMed
Article
Google Scholar
Grauers A, Rahman I, Gerdhem P (2011) Heritability of scoliosis. Eur Spine J. doi:10.1007/s00586-011-2074-1
PubMed
Google Scholar
Axenovich TI, Zaidman AM, Zorkoltseva IV, Tregubova IL, Borodin PM (1999) Segregation analysis of idiopathic scoliosis, demonstration of a major gene effect. Am J Med Genetics 86:389–394
Article
CAS
Google Scholar
Cowell HR, Hall JN, MacEwen GD (1972) Genetic aspects of idiopathic scoliosis, a Nicholas Andry Award Essay. Clin Orthop 86:121–131
PubMed
Article
CAS
Google Scholar
Riseborough EJ, Wynne-Davies RA (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55(5):974–982
PubMed
CAS
Google Scholar
Horton D (2002) In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR (eds) Emery and Rimoin’s principles and practices of medical genetics, 5th edn. Churchill Livingstone Elsevier, Amsterdam, pp 4236–4244
Google Scholar
Andersen MO, Thomsen K, Kyvik KO (2007) Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976) 32(8):927–930
Article
Google Scholar
Hermus JP, van Rhijn LW, van Ooij A (2007) Non-genetic expression of adolescent idiopathic scoliosis: a case report and review of the literature. Eur Spine J 16(Suppl 3):338–341
PubMed
Article
Google Scholar
Weiss HR (2007) Idiopathic Scoliosis: how much of a genetic disorder? Report of five pairs of monozygotic twins. Dev Neurorehabil 10(1):67–73
PubMed
Article
Google Scholar
Fazal MA, Edgar M (2006) Detection of adolescent idiopathic scoliosis. Acta Orthop Belg 72:184–186
Google Scholar
Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96(6):434–442
PubMed
Article
Google Scholar
Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4(2):45–61
PubMed
Article
CAS
Google Scholar
Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ (2008) A navigator for human genome epidemiology. Nat Genet 40(2):124–125
PubMed
Article
CAS
Google Scholar
Carr AJ, Ogilvie DJ, Wordsworth BP, Priestly LM, Smith R, Sykes B (1992) Segregation of structural collagen genes in adolescent idiopathic scoliosis. Clin Orthop Relat Res 274:305–310
PubMed
Google Scholar
Miller NH, Mims B, Child A, Milewicz DM, Sponseller P, Blanton SH (1996) Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. J Orthop Res 14(6):994–999
PubMed
Article
CAS
Google Scholar
Zorkol’tseva IV, Liubinskiĭ OA, Sharipov RN, Zaĭdman AM, Aksenovich TI, Dymshits GM (2002) Analysis of polymorphism of the number of tandem repeats in the aggrecan gene exon G3 in the families with idiopathic scoliosis. Russ J Genet 38(2):196–200
Article
Google Scholar
Morcuende JA, Minhas R, Dolan L, Stevens J, Beck J, Wang K, Weinstein SL, Sheffield V (2003) Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 28(17):2025–2028
Article
Google Scholar
Marosy B, Justice CM, Nzegwu N, Kumar G, Wilson AF, Miller NH (2006) Lack of association between the aggrecan gene and familial idiopathic scoliosis. Spine (Phila Pa 1976) 31(13):1420–1425
Article
Google Scholar
Montanaro L, Parisini P, Greggi T, Di Silvestre M, Campoccia D, Rizzi S, Arciola CR (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1:21
PubMed
Article
Google Scholar
Chen Q, Zhang Y, Johnson DM, Goetinck PF (1999) Assembly of a novel cartilage matrix protein filamentous network: molecular basis of differential requirement of von Willebrand factor A domains. Mol Biol Cell 10:2149–2162
PubMed
CAS
Google Scholar
The International HapMap Consortium (2003) The International HapMap Project Nature 426: 789–796
Google Scholar
Chen Z, Tang NL, Cao X, Qiao D, Yi L, Cheng JC, Qiu Y (2009) Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet 17(4):525–532
PubMed
Article
Google Scholar
Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S (2011) Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res 29(7):1055–1058
PubMed
Article
CAS
Google Scholar
McGregor TL, Gurnett CA, Dobbs MB, Wise CA, Morcuende JA, Morgan TM, Menon R, Muglia LJ (2011) Common polymorphisms in human lysyl oxidase genes are not associated with the adolescent idiopathic scoliosis phenotype. BMC Med Genet 12:92
PubMed
Article
CAS
Google Scholar
Varghese S (2006) Matrix metalloproteinases and their inhibitors in bone: an overview of regulation and functions. Front Biosci 11:2949–2966
PubMed
Article
CAS
Google Scholar
Ortega N, Behonick DJ, Werb Z (2004) Matrix remodeling during endochondral ossification. Trends Cell Biol 14:86–93
PubMed
Article
CAS
Google Scholar
Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283
PubMed
Article
CAS
Google Scholar
Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122
PubMed
CAS
Google Scholar
Ocaka L, Zhao C, Reed JA, Ebenezer ND, Brice G, Morley T, Mehta M, O’Dowd J, Weber JL, Hardcastle AJ, Child AH (2008) Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J Med Genet 45:87–92
PubMed
Article
CAS
Google Scholar
Jiang J, Qian B, Mao S, Zhao Q, Qiu X, Liu Z, Qiu Y (2011) A Promoter Polymorphism of Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) Gene Is Associated With Severity of Thoracic Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) Jan 11: doi:10.1097/BRS.0b013e31820e71e3
Aulisa L, Papaleo P, Pola E, Angelini F, Aulisa AG, Tamburrelli FC, Pola P, Logroscino CA (2007) Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study. Spine (Phila Pa 1976) 32(24):2700–2702
Article
Google Scholar
Liu Z, Tang NL, Cao XB, Liu WJ, Qiu XS, Cheng JC, Qiu Y (2010) Lack of association between the promoter polymorphisms of MMP-3 and IL-6 genes and adolescent idiopathic scoliosis: a case-control study in a Chinese Han population. Spine (Phila Pa 1976) 35(18):1701–1705
Article
Google Scholar
Mórocz M, Czibula A, Grózer ZB, Szécsényi A, Almos PZ, Raskó I, Illés T (2011) Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 36(2):E123–E130
Article
Google Scholar
Yu DM, Wang XM, McCaughan GW, Gorrell MD (2006) Extraenzymatic functions of the dipeptidyl peptidase IV-related proteins DP8 and DP9 in cell adhesion, migration and apoptosis. FEBS J 273(11):2447–2460
PubMed
Article
CAS
Google Scholar
Chan V, Fong GC, Luk KD, Yip B, Lee MK, Wong MS, Lu DD, Chan TK (2002) A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet 71(12):401–406
PubMed
Article
CAS
Google Scholar
Alden KJ, Marosy B, Nzegwu N, Justice CM, Wilson AF, Miller NH (2006) Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine (Phila Pa 1976) 31(16):1815–1819
Article
Google Scholar
Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC (2008) Association study between adolescent idiopathic scoliosis and the DPP9 gene which is located in the candidate region identified by linkage analysis. Postgrad Med J 84(995):498–501
PubMed
Article
CAS
Google Scholar
Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235
PubMed
Article
CAS
Google Scholar
Van den Wijngaard A, Pijpers MA, Joosten PH, Roelofs JM, Van zoelen EJ, Olijve W (1999) Functional characterization of two promoters in the human bone morphogenetic protein- 4 gene. J Bone Miner Res 14:1432–1441
PubMed
Article
Google Scholar
van den Wijngaard A, Mulder WR, Dijkema R, Boersma CJ, Mosselman S, van Zoelen EJ, Olijve W (2000) Antiestrogens specifically up-regulate bone morphogenetic protein-4 promoter activity in human osteoblastic cells. Mol Endocrinol 14:623–633
PubMed
Article
Google Scholar
Williams JP, Micoli K, McDonald JM, Ann NY (2010) Calmodulin-an often-ignored signal in osteoclasts. Acad Sci 1192:358–364
Article
CAS
Google Scholar
Kindsfater K, Lowe T, Lawellin D, Weinstein D, Akmakjian J (1994) Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg Am 76(8):1186–1192
PubMed
CAS
Google Scholar
Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 82-A(8): 1157-1168
Lowe TG, Burwell RG, Dangerfield PH (2004) Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J 13(3):257–265
PubMed
Article
Google Scholar
Zhao D, Qiu GX, Wang YP, Zhang JG, Shen JX, Wu ZH (2009) Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-α gene. Orthop Surg 1(3):222–230
PubMed
Article
Google Scholar
Burner WL 3rd, Badger VM, Sherman FC (1982) Osteoporosis and acquired back deformities. J Pediatr Orthop 2:383–385
PubMed
Article
Google Scholar
Singh M, Magrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg [Am] 52-A: 457-467
Cook SD, Harding AF, Morgan EL, Nicholson RJ, Thomas KA, Whitecloud TS, Ratner ES (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7:168–174
PubMed
Article
CAS
Google Scholar
Suh KT, Lee SS, Hwang SH, Kim SJ, Lee JS (207) Elevated soluble receptor activator of nuclear factor-kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 16:1563–1569
Article
Google Scholar
Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M, Whitecloud TS 3rd, Bennett JT (1992) Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop 12:235–240
PubMed
Article
CAS
Google Scholar
Cheng JC, Tang SP, Guo X, Chan CW, Qin L (2001) Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine (Phila Pa 1976) 26:E19–E23
Article
CAS
Google Scholar
Lee JS, Suh KT, Eun IS (2010) Polymorphism in interleukin-6 gene is associated with bone mineral density in patients with adolescent idiopathic scoliosis. J Bone Joint Surg Br 92(8):1118–1122
PubMed
Article
CAS
Google Scholar
Suh KT, Eun IS, Lee JS (2010) Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 19(9):1545–1550
PubMed
Article
Google Scholar
Inoue M, Minami S, Nakata Y, Takaso M, Otsuka Y, Kitahara H, Isobe K, Kotani T, Maruta T, Moriya H (2002) Prediction of curve progression in idiopathic scoliosis from gene polymorphic analysis. Stud Health Technol Inform 91:90–96
PubMed
Google Scholar
Eun IS, Park WW, Suh KT, Kim JI, Lee JS (2009) Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 18(12):1936–1940
PubMed
Article
Google Scholar
Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomized chickens. J Bone Joint Surg Br 77:134–138
PubMed
CAS
Google Scholar
Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J, Toriyama S (1994) Pathogenesis of idiopathic scoliosis: sEPs in chicken with experimentally induced scoliosis and in patients with idiopathic scoliosis. J Pediatr Orthop 14:329–335
PubMed
Article
CAS
Google Scholar
Girardo M, Bettini N, Dema E, Cervellati S (2011) The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J 20(1):S68–S74
PubMed
Article
Google Scholar
Qiu XS, Tang NL, Yeung HY, Cheng JC, Qiu Y (2008) Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 33(20):2204–2207
Article
Google Scholar
Nelson LM, Ward K, Ogilvie JW (2011) Genetic variants in melatonin synthesis and signaling pathway are not associated with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 36(1):37–40
Article
Google Scholar
Qiu XS, Tang NL, Yeung HY, Qiu Y, Qin L, Lee KM, Cheng JC (2006) The role of melatonin receptor 1B gene (MTNR1B) in adolescent idiopathic scoliosis–a genetic association study. Stud Health Technol Inform 123:3–8
PubMed
CAS
Google Scholar
Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, Ma SL, Kwok RH, Qin L, Qiu Y, Cheng JC (2007) Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 32(16):1748–1753
Article
Google Scholar
Shyy W, Wang K, Gurnett CA, Dobbs MB, Miller NH, Wise C, Sheffield VC, Morcuende JA (2010) Evaluation of GPR50, hMel-1B, and ROR-alpha melatonin-related receptors and the etiology of adolescent idiopathic scoliosis. J Pediatr Orthop 30(6):539–543
PubMed
Article
Google Scholar
Wang H, Wu Z, Zhuang Q, Fei Q, Zhang J, Liu Y, Wang Y, Ding Y, Qiu G (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976) 33(20):2199–2203
Article
Google Scholar
Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447
CAS
Google Scholar
Lambertini E, Penolazzi L, Giordano S, Del Senno L, Piva R (2003) Expression of the human oestrogen receptor” gene is regulated by promoter F in MG-63 osteoblastic cells. Biochem J 372:831–839
PubMed
Article
CAS
Google Scholar
Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, Takaso M, Tokunaga M, Nishikawa S, Maruta T, Moriya H (2002) Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976) 27(21):2357–2362
Article
Google Scholar
Wu J, Qiu Y, Zhang L, Sun Q, Qiu X, He Y (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 31(10):1131–1136
Article
Google Scholar
Esposito T, Uccello R, Caliendo R, Di Martino GF, Gironi Carnevale UA, Cuomo S, Ronca D, Varriale B (2009) Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: a possible genetic linkage. J Steroid Biochem Mol Biol 116(1–2):56–60
PubMed
Article
CAS
Google Scholar
Tang NL, Yeung HY, Lee KM, Hung VW, Cheung CS, Ng BK, Kwok R, Guo X, Qin L, Cheng JC (2006) A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine (Phila Pa 1976) 31(21):2463–2468
Article
Google Scholar
Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S (2010) Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res 29(6):834–837
PubMed
Article
Google Scholar
Sims NA, Clément-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M, Baron R (2003) A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest 111:1319–1327
PubMed
CAS
Google Scholar
Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, Wang XY, Chen J, Xie L (2009) Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34(8):760–764
Article
CAS
Google Scholar
Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P (2011) Genomic polymorphisms of G-Protein Estrogen Receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop. doi:10.1007/s00264-011-1374-8
Google Scholar
Rubin K (2000) Pubertal development and bone. Curr Opin Endocrinol Diabetes Obes 7:65–70
Google Scholar
Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC (2007) Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res 462:53–58
PubMed
Article
Google Scholar
Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, Guo X, Qin L, Cheng JC (2006) Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:18–24
PubMed
CAS
Google Scholar
Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, Wang Y, Ding Y, Qiu G (2009) Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics 32(6):411
PubMed
Article
Google Scholar
Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61
PubMed
Article
CAS
Google Scholar
Zondervan KT, Cardon LR (2007) Designing candidate gene and genome-wide case-control association studies. Nat Protoc 2(10):2492–2501
PubMed
Article
CAS
Google Scholar
Cui Y, Li G, Li S, Wu R (2010) Designs for linkage analysis and association studies of complex diseases. Methods Mol Biol 620:219–242
PubMed
Article
CAS
Google Scholar
Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, Labelle H, Poitras B, Rivard CH, Grimard G (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(16):1772–1781
Article
Google Scholar
Azeddine B, Letellier K, Wang DS, Moldovan F, Moreau A (2007) Molecular determinants of melatonin signalling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res 462:45–52
PubMed
Article
Google Scholar
Akoume MY, Azeddine B, Turgeon I, Franco A, Labelle H, Poitras B, Rivard CH, Grimard G, Ouellet J, Parent S, Moreau A (2010) Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine (Phila Pa 1976) 35(13):E601–E608
Google Scholar
Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645
PubMed
Article
Google Scholar
Chan RC, Gottesman II (2008) Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 32:957–971
PubMed
Article
Google Scholar
Chen C, Yang G, Buyske S, Matise T, Finch SJ, Gordon D (2009) Transmission disequilibrium test power and sample size in the presence of locus heterogeneity. Stat Appl Genet Mol Biol 8(1): Article 44
Google Scholar
Xiao R, Boehnke M (2009) Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol 33(5):453–462
PubMed
Article
Google Scholar
Hattersley AT, McCarthy MI (2005) What makes a good genetic association study? Lancet 366(9493):1315–1323
PubMed
Article
Google Scholar
Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparitive QTL studies. In: Proceedings of the Forty-Ninth Annual Corn & Sorghum Industry Research Conference. American Trade Association, Washington, DC, pp 250–266
Garner C (2007) Upward bias in odds ratio estimates from genome-wide association studies. Genet Epidemiol 31:288–295
PubMed
Article
Google Scholar
Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11(3):241–247
PubMed
Article
CAS
Google Scholar
Bickeböller H (2000) Investigation of linkage and association: issues on study design. Int Stat Rev 68(1):75–81
Article
Google Scholar
Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S, Pizzuti A, Novelli G, Dallapiccola B (2002) Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet 111(4–5):401–404
PubMed
Article
CAS
Google Scholar
Justice CM, Miller NH, Marosy B, Zhang J, Wilson AF (2003) Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine (Phila Pa 1976) 28(6):589–594
Google Scholar
Gurnett CA, Alaee F, Bowcock A, Kruse L, Lenke LG, Bridwell KH, Kuklo T, Luhmann SJ, Dobbs MB (2009) Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to chromosome 18 q. Spine (Phila Pa 1976) 34(2):E94–E100
Article
Google Scholar
Raggio CL, Giampietro PF, Dobrin S, Zhao C, Dorshorst D, Ghebranious N, Weber JL, Blank RD (2009) A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res 27(10):1366–1372
PubMed
Article
Google Scholar
Edery P, Margaritte-Jeannin P, Biot B, Labalme A, Bernard JC, Chastang J, Kassai B, Plais MH, Moldovan F, Clerget-Darpoux F (2011) New disease gene location and high genetic heterogeneity in idiopathic scoliosis. Eur J Hum Genet 19(8):865–869
PubMed
Article
CAS
Google Scholar
Miller NH, Justice CM, Marosy B, Doheny KF, Pugh E, Zhang J, Dietz HC 3rd, Wilson AF (2005) Identification of candidate regions for familial idiopathic scoliosis. Spine (Phila Pa 1976) 30(10):1181–1187
Article
Google Scholar
Miller NH, Marosy B, Justice CM, Novak SM, Tang EY, Boyce P, Pettengil J, Doheny KF, Pugh EW, Wilson AF (2006) Linkage analysis of genetic loci for kyphoscoliosis on chromosomes 5p13, 13q13.3, and 13q32. Am J Med Genet A 140(10):1059–1068
PubMed
Google Scholar
Marosy B, Justice CM, Vu C, Zorn A, Nzegwu N, Wilson AF, Miller NH (2010) Identification of susceptibility loci for scoliosis in FIS families with triple curves. Am J Hum Genet A 152A(4):846–855
CAS
Google Scholar
Clough M, Justice CM, Marosy B, Miller NH (2010) Males with familial idiopathic scoliosis: a distinct phenotypic subgroup. Spine (Phila Pa 1976) 35(2):162–168
Article
Google Scholar
Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, Wise C (2011) CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet 80(5):957–965
Article
Google Scholar
Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT, Brandon JM, Zhang D, Li QZ, Dobbs MB, Gurnett CA, Grant SF, Hakonarson H, Dormans JP, Herring JA, Gordon D, Wise CA (2011) Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 20(7):1456–1466
PubMed
Article
CAS
Google Scholar
Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S (2011) A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. doi:10.1038/ng.974
Google Scholar
Yimlamai D, Konnikova L, Moss LG, Jay DG (2005) The zebrafish down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Dev Biol 279(1):44–57
PubMed
Article
CAS
Google Scholar