Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Drought stress, which is one of the most serious world environmental threats to crop production, might be compensated by some free living and symbiotic soil microorganisms. The physiological response of flax plants to inoculation with two species of arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae or Rhizophagus intraradices) and a phosphate solubilizing bacterium (Pseudomonas putida P13; PSB) was evaluated under different irrigation regimes (irrigation after 60, 120, and 180 mm of evaporation from Class A pan as well-watered, mild, and severe stress, respectively). A factorial (three factors) experiment was conducted for 2 years (2014–2015) based on a randomized complete block design with three replications at Urmia University, Urmia, located at North-West of Iran (37° 39′ 24.82″ N44° 58′ 12.42″ E). Water deficit decreased biomass, showing that flax was sensitive to drought, and AM root colonization improved the performance of the plant within irrigation levels. In all inoculated and non-inoculated control plants, leaf chlorophyll decreased with increasing irrigation intervals. Water deficit-induced oxidative damage (hydrogen peroxide, malondialdehyde, and electrolyte leakage) were significantly reduced in dual colonized plants. All enzymatic (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbic acid, total carotenoids) antioxidants were reduced by water-limiting irrigation. Dual inoculated plants with AM plus Pseudomonas accumulated more enzymatic and non-enzymatic antioxidants than plants with bacterial or fungal inoculation singly. Dual colonized plants significantly decreased the water deficit-induced glycine betaine and proline in flax leaves. These bacterial-fungal interactions in enzymatic and non-enzymatic defense of flax plants demonstrated equal synergism with both AM fungi species. In conclusion, increased activity of enzymatic antioxidants and higher production of non-enzymatic antioxidant compounds in symbiotic association with bacteria and mycorrhiza can alleviate reactive oxygen species damage resulting in improve water stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Armada E, Portela G, Roldán A, Azcón R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232-234:640–648

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Azcon R, Azcon Aguilar C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359–364

    Article  CAS  Google Scholar 

  • Bai BZ, Yu SQ, Tian WX, Zhao JY (1996) Plant physiology. China Agricultural Science, Beijing

    Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benami A, Ofen A (1984) Irrigation engineering—sprinkler, trickle and surface irrigation: principles, design and agricultural practices. Irrigation Engineering Scientific Publications, Haifa

    Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonas improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Dhindsa RH, Plumb-Dhindsa R, Thorpe TA (1981) Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buechel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to paraquat in pea leaves (relationship to resistance). Plant Physiol 113:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • FAOSTAT (2014) [online] available at http://faostat.fao.org.

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhizal is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Pinar R, Espinosa Urgel M, Dubern JF, Heeb S, Ramos JL, Camara M (2012) Fatty acid-mediated signaling between two Pseudomonas species. Environ Microb Rep 4:417–423

    Article  CAS  Google Scholar 

  • Fouad MO, Essahibi A, Benhiba A, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res 12:763–771

    Article  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis part 2nd ed. Agronomy. Monograph no. 9. American Society of Agronomy and Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gogorcena Y, Gordon AJ, Escuredo PR, Mincin FR, Witty JF, Moran JF, Becana M (1997) N fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed Common Bean plants. Plant Physiol 113:1193–1201

  • Goicoechea N, Merino S, Sanchez Diaz M (2005) Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. J Plant Physiol 162:27–35

    Article  CAS  PubMed  Google Scholar 

  • Goudarzi M, Pakniyat H (2009) Salinity causes increase in proline and protein contents and peroxidase activity in wheat cultivars. J App Sci 9:348–354

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Habibzadeh Y, Jalilian J, Zardashti MR, Pirzad A, Eini O (2015) Some morpho-physiological characteristics of mung bean mycorrhizal plants under different irrigation regimes in field condition. J Plant Nutr 38:1754–1767

    Article  CAS  Google Scholar 

  • He M, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–993

    Article  CAS  PubMed  Google Scholar 

  • Jamil Marur C, Mazzafera P, Celso Magalhaes A (1996) Carbon assimilation and export in leaves of cotton plants under water deficit. Braz J Plant Physiol 8:181–186

    Google Scholar 

  • Kpyoarissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831

    Article  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1984) Growth and nutrient uptake of peanut inoculated with mycorrhizal fungus Glomus fasciculatum compared with uninoculated ones. Plant Soil 77:405–408

    Article  CAS  Google Scholar 

  • Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306

    Article  CAS  Google Scholar 

  • Law Y, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacea oleracea) chloroplasts. Biochem J 210:899–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu J, Xie X, Du J, Sun J, Bai X (2008) Effects of simultaneous drought and heat stress on Kentucky bluegrass. J Hortic Sci 115:190–195

    Article  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Maehly AC, Chance B (1959) The assay of catalase and peroxidase. In: Glick D (ed) Methods of biochemical analysis, Vol. 1. Interscience Publishers, New York, pp 357–425

    Google Scholar 

  • Malboobi MA, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Morabbi Heravi K (2009) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE (1996) Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annum L.) Soil Biol Biochem 28:869–876

    Article  CAS  Google Scholar 

  • Marulanda A, Azcon R, Ruız-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus co-inoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18

    Article  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Masoudi Sadaghiani F, Abdollahi B, Zardoshti MR, Rasouli Sadaghiani H, Tavakoli A (2011) Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust J Crop Sci 5:55–60

    Google Scholar 

  • Minaxi Saxena J, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Plant Nutr 13:511–525

    Google Scholar 

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7:1–15

    Article  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Effects of drought stress on soluble proteins in two maize varieties. Turk J Biol 32:23–30

    CAS  Google Scholar 

  • Muir AD, Westcott ND (2003) Flax - the genus Linum. Taylor and Francis, London

    Google Scholar 

  • Neetu N, Tanwar A, Aggarwal A (2011) Impact of arbuscular mycorrhizal fungi and other bioinoculants on growth promotion in Linum usitatissimum L. J Indian Bot Soc 90:216–223

    Google Scholar 

  • Nelson BW, Sommers LE (1986) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis part 2nd ed. Agronomy. Monograph no. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp 539–577

    Google Scholar 

  • Ohnishi T, Gall RS, Mayer ML (1975) An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. Anal Biochem 69:261–267

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR, Sommers LE (1986) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis part 2nd ed. Agronomy. Monograph no. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp 403–427

    Google Scholar 

  • Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycorhiza uralensis Fisch). J Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutierrez M, Porcel R, Hause B, Ruiz-Lozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26:141–152

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Ramoliya PJ, Patel HM, Pandey AN (2004) Effect of salinization of soil on growth and macro-and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For Ecol Manag 202:181–193

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Palma JM (1996) Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327–333

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Miguel Barea J, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Ruiz-Sanchez M, Armada E, Munoz Y, Garcia de Salamone IE, Aroca R, Ruiz-Lozano JM, Azcon R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Minakshi G, Gopal R, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Sawers RJ, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    Article  CAS  PubMed  Google Scholar 

  • Sgherri CLM, Liggini B, Puliga S, Navari Izzo F (1994) Antioxidant system in Sporoblus stapfianus. Changes in response to desiccation and rehydration. Phytochemistry 35:561–565

    Article  CAS  Google Scholar 

  • Smith IK (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79:1044–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon HLS (1993) Methods of analysis of soils, plants, waters and fertilizer (Ed). Fertilizer development and consultation organization, New Delhi, India.

  • Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    Article  CAS  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vijayalakshmi T, Varalaxmi Y, Jainender S, Yadav S, Vanaja M, Jyothilakshmi N, Maheswari M (2012) Physiological and biochemical basis of water-deficit stress tolerance in pearl millet hybrid and parents. Am J Plant Sci 3:1730–1740

    Article  CAS  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am Proc 29:677–678

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 10:436–442

    Google Scholar 

  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, Van der Lelie D (2010) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    Article  PubMed Central  Google Scholar 

  • Zhang ZL, Qu W (2004) Experimental guidance of plant physiology. High Education Press, Beijing

    Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Pirzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimzadeh, S., Pirzad, A. Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycorrhiza 27, 537–552 (2017). https://doi.org/10.1007/s00572-017-0775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0775-y

Keywords

Navigation