Skip to main content
Log in

Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Currently, irrigation using recycled water is increasing, especially in semiarid environments, but a potential problem of using reclaimed wastewater is its elevated salt levels. The application of arbuscular mycorrhizal fungi (AMF) could be a suitable option to mitigate the negative effects produced by the salinity. In this work, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: Control, C, with EC <0.9 dS m−1 and reclaimed water (wastewater previously treated in a sewage treatment plant) with EC 4 dS m−1 during a first saline period (11 weeks) and with EC 6 dS m−1 during a second saline period (25 weeks), was evaluated for laurustinus (Viburnum tinus) plants under field conditions. This plant is a popular shrub very used for gardening. Chemical properties of soil as well as physiological behavior, leaf nutrition, and esthetic value of plants were evaluated. Due to the high salinity from wastewater at 6 dS m−1, laurustinus plants decreased their stem water potential values and, to a lesser extent, the stomatal conductance. Also, the visual quality of the plants was diminished. The inoculated AMF satisfactorily colonized the laurustinus roots and enhanced the structure of the soil by increasing the glomalin and carbon contents. Furthermore, G. iranicum var. tenuihypharum inoculation decreased Na and Cl content, stimulated flowering and improved the stem water potential of the plants irrigated with both types of reclaimed water. The AMF also had a positive effect as a consequence of stimulation of plant physiological parameters, such as the stem water potential and stomatal conductance. Effective AMF associations that avoid excessive salinity could provide wastewater reuse options, especially when the plants grow in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Fattah GM (2001) Measurement of the viability of arbuscular mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. Microbiol Res 156:359–367

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Fattah GM, Asrar AA (2012) Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol Plant 34:267–277

    Article  CAS  Google Scholar 

  • Abrisqueta I, Abrisqueta JM, Tapia LM, Munguía JP, Conejero W, Vera J, Ruiz-Sánchez MC (2013) Basal crop coefficients for early-season peach trees. Agric Water Manag 121:158–163

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome

    Google Scholar 

  • Amaya-Carpio L, Davies FT, Fox T, He C (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica 47:1–10

    Article  CAS  Google Scholar 

  • Anderson JM (2005) Integrating recycled water into urban water supply solutions. In: Khan SJ, Muston MH, Schäfer AI (eds) Integrated concepts in water recycling. University of Wollongong, Australia, pp 32–40

    Google Scholar 

  • Azza A, Fatma E, Favahat M (2007) Responses of ornamental plants woody trees to salinity world. J Agric Sci 3:386–395

    Google Scholar 

  • Bañón S, Miralles J, Ochoa J, Sánchez-Blanco MJ (2012) The effect of salinity and high boron on growth, photosynthetic activity and mineral contents of two ornamental shrubs. Hort Sci 39:188–194

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Cassaniti C, Romano D, Flowers TJ (2012) The response of ornamental plants to saline irrigation water. In: García-Garizábal I, Abrahao R (eds) Irrigation: types, sources and problems/book 2. Intech, Rijeka, Croatia, pp 131–158

    Google Scholar 

  • Çekiç FÖ, Ünyayar F, Ortaş İ (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk J Bot 36:63–72

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress. Regulation mechanisms from whole plant to cell. Ann Bot-London 103:551–560

    Article  CAS  Google Scholar 

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    Article  CAS  PubMed  Google Scholar 

  • Comis D (2002) Glomalin: Hiding place for a third of the world’s stored soil carbon. Agricultural Research Magazine, September issue: 1–4

  • Dudhane M, Borde M, Jite P (2011) Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition. Nat Sci Biol 3:71–78

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández F, Juárez J (2011) Procedimiento de obtención de un agente micorrizógeno. Solicitud de Patente Invención no 201130566. OEPM. 17 p

  • Fox LJ, Grose JN, Appleton BL, Donohue SJ (2005) Evaluation of treated effluent as an irrigation source for landscape plants. J Environ Hortic 23:174–178

    Google Scholar 

  • Gaur A, Adholeya A (2005) Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular mycorrhizal inocula in marginal soil amended with organic matter. J Plant Nutr 28:707–723

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Tisserant B, Lemoine MC (1992) Protein activities as potential markers of functional endomycorrhizas in plants. In: Read DJ, Lewis DH, Fitter AH, Alexander I (eds) Mycorrhizas in ecosystems. CAB International, Oxon, pp 333–339

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol 84:489–499

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:304–312

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Bellot MJ, Álvarez S, Bañón S, Ortuño MF, Sánchez-Blanco MJ (2013) Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agric Water Manag 128:131–139

    Article  Google Scholar 

  • Grümberg B, Conforto C, Rovea A, Boxler M, March G, Luna C, Meriles J, Vargas Gil S (2010) La glomalina y su relación con la productividad del cultivo de maíz. Informaciones Agronómicas del Cono Sur 47:23–25

    Google Scholar 

  • Gucci R, Xilyannis C, Flores JA (1991) Gas exchange parameters, water relations and carbohydrate partitioning in leaves of field-grown Prunus domestica following fruit removal. Physiol Plant 83:497–505

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hamel C, Plenchette C (2007) Mycorrhizae in crop production. Haworth food and agricultural products. Haworth Press, Binghamton, p366

    Google Scholar 

  • Hammer EC, Rillig MC (2011) The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus—salinity increases glomalin content. PLoS One 6(12):e28426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 5:371–379

    Article  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306

    Article  CAS  Google Scholar 

  • MacDonald RM, Lewis M (1978) The occurrence of some acid phosphatases and dehydrogenases in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 80:135–141

    Article  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  CAS  PubMed  Google Scholar 

  • Moreno F, Fernandez JE, Clothier BE, Green SR (1996) Transpiration and root water uptake by olive trees. Plant Soil 184:85–96

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Navarro N, Bañón S, Morte A, Sánchez-Blanco MJ (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64

    Article  Google Scholar 

  • Navarro A, Elia A, Conversa G, Campi P, Mastrorilli M (2012) Potted mycorrhizal carnation plants and saline stress: growth, quality and nutritional plant responses. Sci Hortic 140:131–139

    Article  CAS  Google Scholar 

  • Nicolás E, Maestre-Valero JF, Alarcón JJ, Pedrero F, Vicente-Sánchez J, Bernabé A, Gómez-Montiel J, Hernández A, Fernández F (2014) Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of crimson seedless grapevine. J Agric Sci. doi:10.1017/S002185961400080X

    Google Scholar 

  • Nidchaporn N (2005) Effects of long-term fertilization on diversity of arbuscular mycorrhizal fungi under a maize cropping system in thailand. Ph.D. Thesis, Kasetsart University, Thailand

  • Niu G, Cabrera RI (2010) Growth and physiological responses of landscape plants to saline water irrigation: a review. HortSci 45:1605–1609

    Google Scholar 

  • Pedrero F, Mounzer O, Alarcón JJ, Bayona JM, Nicolás E (2013) The viability of irrigating mandarin trees with saline reclaimed water in a semi-arid Mediterranean region: a preliminary assessment. Irrig Sci 31:759–768

    Article  Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mader P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:157–160

    Article  Google Scholar 

  • Qadir M, Wichelns D, Raschid-Sally L, Minhas PS, Drechsel P, Bahri A, McCornick P (2007) Agricultural use of marginal-quality water—opportunities and challenges. In: Molden D (ed) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan, London

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and vesicular arbuscular activity in mycorrhizal Allium cepa L.: effect of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Turner NC (1988) Measurements of plant water status by the pressure chamber technique. Irrig Sci 9:289–308

  • Vicente-Sánchez J, Nicolás E, Pedrero F, Alarcón JJ, Maestre-Valero JF, Fernández F (2013) Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24:339–348

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3, extracts from soils. Soil Sci Soc Am Proc 29:677–678

    Article  CAS  Google Scholar 

  • Wright SF, Franke–Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Gómez-Bellot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Bellot, M.J., Ortuño, M.F., Nortes, P.A. et al. Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza 25, 399–409 (2015). https://doi.org/10.1007/s00572-014-0621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0621-4

Keywords

Navigation