Skip to main content

Advertisement

Log in

The viability of irrigating mandarin trees with saline reclaimed water in a semi-arid Mediterranean region: a preliminary assessment

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

The effect of irrigation water quality was investigated in a commercial mandarin orchard during four growing seasons using fresh water (EC ≈ 1 dS m−1), irrigators’ association water (EC = 1–3 dS m−1) and reclaimed water (RW) (EC ≈ 3 dS m−1). RW had higher concentration of macro- and micronutrients, especially potassium, and the phytotoxic elements, boron, sodium and chlorides. The microbiological load in the different irrigation water sources showed a high seasonal variability, and all water sources occasionally exceeded health standards to irrigate fruit trees. In the RW treatment, an increase in soil salinity and leaf boron concentration was observed. The nutritional contribution of RW was high, providing 24 and 15 % of the annual nitrogen and phosphorus (N and P2O5) fertilizer requirement for mandarin oranges, respectively, and RW treatment satisfied the entire potassium requirement (K2O). An important fluctuation in the crop production was observed during the 4 years in the different water quality treatments. In general, quality parameters of mandarins were not affected. The results provide additional evidence that long-term effects must be studied to test sustainability when using RW irrigation on fruit trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage paper no 56. Rome, Italy, pp 15–27

  • APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington

    Google Scholar 

  • Angin I, Yaganoglu AV, Turan M (2005) Effects of long-term wastewater irrigation on soil properties. J Sustain Agric 26:31–42

    Article  Google Scholar 

  • AOAC (1984) Tuberculocidal activity of disinfectants. In: Williams S (ed) Official methods of analysis, 14th edn. Association of Official Analytical Chemists, Arlington, pp 73–74

    Google Scholar 

  • Aucejo A, Ferrer J, Gabaldón C, Marzal P, Seco A (1997) Toxicity in citrus plantations in Villareal, Spain. Water Air Soil Pollut 94:349–360

    CAS  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage, Rome, p 174

  • Bailenger J (1979) Mechanisms of parasitological concentration in coprology and their practical consequences. J Am Med Tech 41:65–71

    Google Scholar 

  • Bar-Tal A, Feigenbaum S, Sparks DL (1991) Potassium-salinity interactions in irrigated corn. Irrig Sci 12:27–35

    Article  Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils. Principles-dynamics-modeling. Springer, New York

    Book  Google Scholar 

  • Castel JR, Bautista I, Ramos C, Cruz G (1987) Evapotranspiration and irrigation efficiency of mature orange orchards in Valencia (Spain). Irrig Drain Syst 3:205–217

    Article  Google Scholar 

  • Dobrowolski J, O’Neill M, Duriancik L, Throwe J (2008) Opportunities and challenges in agricultural water reuse: final report. USDA-CSREES, p 89

  • ESAMUR (2005) I Jornadas Técnicas de Saneamiento y Depuración. Murcia, Spain

    Google Scholar 

  • ESAMUR (2009) Entidad Regional de Saneamiento y Depuración de Aguas Residuales. Available in: http://www.esamur.com/. 30 Dec 2009

  • Fereres E, Connor DJ (2004) Sustainable water management in agriculture. In: Cabrera E, CoBacho R (eds) Challenges of the new water policies for the XXI century. Balkema AA, Lisse, pp 157–170

    Google Scholar 

  • Fereres E, Goldhamer DA (1990) Deciduous fruit and nut trees. In: Stewart BA, Nielsen DR (eds) Irrigation of agricultural crops. A.S.A. Madison, USA, Monograph 30, pp 987–1017

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. The Australian National University, Canberra, Australia, and CAB International, Wallingford, Oxon, UK

  • Hillel D (2000) Salinity management for sustainable irrigation: integrating science, environment and economics. The World Bank, Washington, p 92

    Book  Google Scholar 

  • Hutchinson DJ (1977) Influence of rootstock on the performance of Valencia sweet orange. Proc Int Soc Citric 2:523–525

    Google Scholar 

  • Isidoro D, Grattan SR (2011) Predicting soil salinity in response to different irrigation practices, soil types and rainfall scenarios. Irrig Sci 29:197–211

    Google Scholar 

  • Jimenez-Cisneros B (1995) Wastewater reuse to increase soil productivity. J Water Sci Technol 32:173–180

    Article  CAS  Google Scholar 

  • Lazarova V, Bahri A (2005) Irrigation with recycled water: agriculture, turfgrass and landscape. CRC Press, Catalogue no. L1649, Boca Raton, p 408

  • Legaz F, Serna MD, Ferrer P, Cebolla V, Primo-Millo E (1995) Análisis de hojas, suelos y aguas para el diagnóstico nutricional de plantaciones de cítricos. Procedimiento de toma de muestras. Generalitat Valenciana, p 27

  • Li GB, Li YK, Xu TW, Lio YZ, Jin H, Yang PL, Yan DZ, Ren SM, Tian ZF (2011) Effects of average velocity on the growth and surface topography of biofilms attached to the reclaimed wastewater drip irrigation system laterals. Irrig Sci. doi:10.1007/s00271-011-0266-4

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    Article  PubMed  CAS  Google Scholar 

  • Maas EV, Grattan SR (1999). Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage. Agron Monograph 38. ASA, CSSA, SSSA, Madison, pp 55–108

  • Manafi M, Kneifel W (1989) A combined chromogenic-fluorogenic medium for the simultaneous detection of total coliforms and E. coli in water. Zentralabl Hyg 189:225–234

    CAS  Google Scholar 

  • Marsal J, Behboudian MH, Mata M, Basile B, Del Campo J, Girona J, Lopez G (2010) Fruit thinning in ‘conference’ pear grown under deficit irrigation to optimize yield and to improve tree water status. J Hortic Sci Biotech 85:125–130

    Google Scholar 

  • Maurer MA, Davies FS, Graetz DA (1995) Reclaimed wastewater irrigation and fertilization of mature ‘Redblush’ grapefruit trees on spodosols in Florida. J Amer Soc Hort Sci 120:394–402

    Google Scholar 

  • McCutchan H, Shackel KA (1992) Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv French). J Am Soc Hortic Sci 117:607–611

    Google Scholar 

  • Meli S, Porto M, Belligno A, Bufo S, Mazzatura A, Scopa A (2002) Influence of irrigation with lagooned urban wastewater on chemical and microbiological soil parameters in a citrus orchard under Mediterranean condition. Sci Total Environ 285:69–77

    Article  PubMed  CAS  Google Scholar 

  • Morgan KT, Wheaton A, Parsons LR, Castle WS (2008) Effects of reclaimed municipal waste water on horticultural characteristics, fruit quality, and soil and leaf mineral concentration of citrus. Hort Sci 43:459–464

    Google Scholar 

  • Nicholaichuk W, Leyshon AJ, Jame YW, Campbell CA (1988) Boron and salinity survey of irrigation projects and the boron adsorption characteristics of some Saskatchewan soils. Can J Soil Sci 68:77–90

    Article  CAS  Google Scholar 

  • Ortiz M, Raluy RG, Serra L (2007) Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination 204:121–131

    Article  CAS  Google Scholar 

  • Ortuño MF, Alarcón JJ, Nicolás E, Torrecillas A (2004) Comparison of continuously recorded plant-based water stress indicators for young lemon trees. Plant Soil 267:263–270

    Article  Google Scholar 

  • Ortuño MF, García-Orellana Y, Conejero W, Ruiz-Sánchez MC, Mounzer O, Alarcón JJ, Torrecillas A (2006) Relationships between climatic variables and sap flow, stem water potential and maximum daily trunk shrinkage in lemon trees. Plant Soil 279:229–242

    Article  Google Scholar 

  • Paranychianakis NV, Chartzoulakis KS, Angelakis AN (2004) Influence of rootstock, irrigation level and recycled water on water relations and leaf gas exchange of Soultanina grapevines. Environ Exp Bot 52:185–198

    Article  Google Scholar 

  • Parsons LR, Wheaton TA (1996) Florida citrus irrigation with municipal reclaimed water. Proc Int Soc Citric 2:692–695

    Google Scholar 

  • Pedrero F, Alarcón JJ (2009) Effects of treated wastewater irrigation on lemon trees. Desalination 246:631–639

    Article  CAS  Google Scholar 

  • Pedrero F, Kalavrouziotis I, Alarcón JJ, Koukoulakis P, Asano T (2010) Use of treated municipal wastewater in irrigated agriculture—review of some practices in Spain and Greece. Agric Water Manag 97:1233–1241

    Article  Google Scholar 

  • Pereira BFF, He ZL, Stoffella PJ, Melfi AJ (2011) Reclaimed wastewater: effects on citrus nutrition. Agric Water Manag 98:1828–1833

    Article  Google Scholar 

  • Pérez-Pérez JG, Romero P, Navarro JM, Botía P (2008) Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: water relations, leaf gas exchange and vegetative growth. Irrig Sci 26:415–425

    Article  Google Scholar 

  • Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Sánchez A (2003) The role of low-quality irrigation water in the desertification of semi-arid zones in Murcia, SE Spain. Geoderma 113:109–125

    Article  Google Scholar 

  • Ramos C (1996) El riego con aguas residuales. Aprovechamiento del agua depurada en la Comunidad Valenciana. Sanejament d’Aigües-Generalitat Valenciana (eds), pp 49–63

  • Reboll V, Cerezo M, Roig A, Flors V, Lapeña V, García-Agustín P (2000) Influence of wastewater vs groundwater on young citrus trees. J Sci Food Agric 80:1441–1446

    Article  CAS  Google Scholar 

  • Rhoades JD (1982) Soluble salts. In: Page AL (ed) Methods of soil analysis, Part 2, 2nd edn., Agronomy 9, American Society of Agronomy, Madison, WI, pp 167–178

  • Richards LA (1954) Diagnosis and improvement of saline and alkaline soils, Handbook 60. U.S. Department of Agriculture, Madison, p 160

  • Tangsubkul N, Moore S, Waite TD (2005) Incorporating phosphorus management considerations into wastewater management practices. Environ Sci Policy 8:1–15

    Article  CAS  Google Scholar 

  • Thompson JN (1982) Interaction and coevolution. Wiley, New York, p 179

    Google Scholar 

  • Turner NC (1988) Measurements of plant water status by pressure chamber technique. Irrig Sci 9:289–308

    Article  Google Scholar 

  • UNECE (2009) Standard concerning the marketing and commercial quality control of citrus fruit. UNECE, New York, p 12

    Google Scholar 

  • US EPA (2004) Guidelines for water reuse. U.S. Environmental Protection Agency, Report No. EPA/625/R-04/108, Cincinnati, OH, USA, p 445

  • Walker RR, Blackmore DH, Clingeleffer PR, Iakono F (1997) Effect of salinity and Ramsey rootstock on ion concentrations and carbon dioxide assimilation in leaves of drip-irrigated, field-grown grapevines (Vitis vinifera L. cv. Sultana). Aust J Grape Wine Res 3:66–74

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2006) Wastewater use in agriculture. In: Guidelines for the safe use of wastewater, excreta and greywater. Geneva, p 100

  • Zekri M, Koo RCJ (1993) A reclaimed water citrus irrigation project. Proc Fla State Hortic Soc 106:30–35

    Google Scholar 

  • Zekri M, Koo RCJ (1994) Treated municipal wastewater for citrus irrigation. J Plant Physiol 17:693–708

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1990) Calcium influences growth and leaf mineral concentration of citrus under saline conditions. Hortic Sci 25:784–786

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1992) Salinity tolerance of citrus rootstocks: effects of salt on root and leaf mineral concentrations. Plant Soil 147:171–181

    Article  CAS  Google Scholar 

  • Zid E, Grignon C (1985) Sodium-calcium interactions in leaves of Citrus aurantium grown in the presence of NaCl. Physiol Veg 23:895–990

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by four projects granted to the authors, SIRRIMED (FP7-KBBE-2009-3-245159), CONSOLIDER-INGENIO 2010 (MEC CSD2006-0067), SENECA (11872/PI/09) and CICYT (AGL2010-17553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pedrero.

Additional information

Communicated by I. Dodd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrero, F., Mounzer, O., Alarcón, J.J. et al. The viability of irrigating mandarin trees with saline reclaimed water in a semi-arid Mediterranean region: a preliminary assessment. Irrig Sci 31, 759–768 (2013). https://doi.org/10.1007/s00271-012-0359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-012-0359-8

Keywords

Navigation