Skip to main content
Log in

Mycorrhizal fungi associated with Monotropastrum humile (Ericaceae) in central Japan

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

We explored the diversity of mycorrhizal fungi associated with Monotropastrum humile in the central part of Japan's main island. We collected 103 M. humile individuals from 12 sites with various forest types. We analyzed the DNA sequences of the internal transcribed spacer region from fungal and plant nuclear ribosomal DNAs to assess the genetic diversity of the fungi associated with M. humile roots and to position the plant with respect to known Monotropoideae groups, respectively. The plants formed a monophyletic clade with other members of M. humile but were separated from M. humile var. glaberrimum and other monotropes (97% bootstrap support). Of the 50 fungal phylotypes, 49 had best matches with the Russulales, and the other had highest similarity with the Thelephoraceae. Our phylogenetic analysis suggests that M. humile roots have a highly specialized association with fungal partners in the Russulaceae. Moreover, a few fungal phylotypes from the M. humile roots had positions neighboring those from Monotropa uniflora roots. These results indicated that the genetic diversity of mycorrhizal fungi of M. humile was highly specific to the Russulaceae, but with high diversity within that family, and that the fungi associated with M. humile differ from those associated with M. uniflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Björkman E (1960) Monotropa hypopitys L.—an epiparasite on tree roots. Physiol Plant 13:308–327

    Article  Google Scholar 

  • Bruns TD, Read DJ (2000) In vitro germination of non-photosynthetic, myco-heterotrophic plants stimulated by fungi isolated from the adult plants. New Phytol 148:335–342

    Article  Google Scholar 

  • Cullings KW, Szaro T, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63–66

    Article  CAS  Google Scholar 

  • Duddridge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in Monotropa hypopitys L. New Phytol 92:203–214

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rust. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Horton TR (2002) Molecular approaches to ectomycorrhizal diversity studies: variation in ITS at a local scale. Plant Soil 244:29–39

    Article  CAS  Google Scholar 

  • Imamura A, Kurogi S (2003) Difference in monotropoid mycorrhiza formation between Monotropastrum globosum and its forma roseum. Mycoscience 44:63–65

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440

    Article  PubMed  CAS  Google Scholar 

  • Kasuya MCM, Masaka K, Igarashi T (1995) Mycorrhizae of Monotropastrum globosum growing in a Fagus crenata forest. Mycoscience 36:461–464

    Article  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (eds) (2008) Dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Kitamura S, Mutata G, Hori M (1975) Coloured illustrations of herbaceous plants of Japan (Sympetalae). Hoikusha, Osaka

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (“saprophytic”) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR, McKendrick SL, Bidartondo M, Read DJ (2004) Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423

    Article  Google Scholar 

  • Lutz RW, Sjolund RD (1973) Monotropa uniflora: ultrastructural details of its mycorrhizal habit. Am J Bot 60:339–345

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110

    Article  PubMed  CAS  Google Scholar 

  • Massicotte HB, Melville LH, Tackaberry LE, Peterson RL (2007) Pityopus californicus: structural characteristics of seed and seedling development in a myco-heterotrophic species. Mycorrhiza 17:647–653

    Article  PubMed  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Tackaberry LE, Luoma DL (2010) Structural characteristics of root-fungus associations in two mycoheterotrophic species, Allotropa virgata and Pleuricospora fimbriata (Monotropoideae) from southwest Oregon, USA. Mycorrhiza 20:391–397

    Article  PubMed  Google Scholar 

  • Matsuda Y, Hijii N (1998) Spatiotemporal distribution of fruit bodies of ectomycorrhizal fungi in an Abies firma forest. Mycorrhiza 8:131–138

    Article  Google Scholar 

  • Matsuda Y, Hijii N (1999) Characterization and identification of Strobilomyces confusus ectomycorrhizas on Momi fir by RFLP analysis of the PCR-amplified ITS region of the rDNA. J For Res 4:145–150

    Article  Google Scholar 

  • Matsuda Y, Hijii N (2004) Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can J Bot 82:822–829

    Article  Google Scholar 

  • Matsuda Y, Yamada A (2003) Mycorrhizal morphology of Monotropastrum humile collected from six different forests in central Japan. Mycologia 95:993–997

    Article  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, 333 pp

    Google Scholar 

  • Robertson DC, Robertson JA (1982) Ultrastructure of Pterospora andromedea Nuttall and Sarcodes sanguinea Torrey mycorrhizas. New Phytol 92:539–551

    Article  Google Scholar 

  • Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a Web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  PubMed  CAS  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  PubMed  CAS  Google Scholar 

  • Selosse MA, Richard F, He X, Simard SW (2006) Mycorhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Suvi T, Larsson E, Kõljalg U (2006) Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol Res 110:734–748

    Article  PubMed  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse MA (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217

    Article  PubMed  Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160:391–401

    Article  CAS  Google Scholar 

  • Tsukaya H, Yokoyama J, Imaichi R, Ohba H (2008) Taxonomic status of Monotropastrum humile, with special reference to M. humile var. glaberrimum (Ericaceae, Monotropoideae). J Plant Res 121:271–278

    Article  PubMed  Google Scholar 

  • Wallace GD (1975) Studies of Monotropoideae (Ericaceae): taxonomy and distribution. Wasmann J Biol 33:1–88

    Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols—a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Yamada A, Katsuya K (2001) The disparity between the number of ectomycorrhizal fungi and those producing fruit bodies in a Pinus densiflora stand. Mycol Res 105:957–965

    Google Scholar 

  • Yamada A, Kitamura D, Setoguchi S, Hashimoto Y, Matsuda Y, Matsushita N, Fukuda M (2008) Monotropastrum humile var. humile is associated with diverse ectomycorrhizal Russulaceae fungi in Japanese forests. Ecol Res 23:983–993

    Article  Google Scholar 

  • Yang S, Pfister DH (2006) Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi. Mycologia 98:535–540

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama J, Fukuda T, Tsukaya H (2005) Molecular identification of the mycorrhizal fungi of the epiparasitic plant Monotropastrum humile var. glaberrimum (Ericaceae). J Plant Res 118:53–56

    Article  PubMed  CAS  Google Scholar 

  • Young BW, Massicotte HB, Tackaberry LE, Baldwin QF, Egger KN (2002) Monotropa uniflora: morphological and molecular assessment of mycorrhizae retrieved from sites in the Sub-Boreal Spruce biogeoclimatic zone in central British Columbia. Mycorrhiza 12:75–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Naoto Oonishi (Taiki town office, Mie Prefecture) and Naoya Yamano (The Japan Serow Center in Mie Prefecture) for providing information on the plant materials, the members of the Laboratory of Forest Pathology and Mycology, Mie University, for their assistance in the field, and two anonymous reviewers for their insightful suggestions on this manuscript. This study was supported in part by Grants-in-Aid for Scientific Research from the Japan Ministry of Education, Science, Sports and Culture to YM (20651061 and 22688011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Matsuda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, Y., Okochi, S., Katayama, T. et al. Mycorrhizal fungi associated with Monotropastrum humile (Ericaceae) in central Japan. Mycorrhiza 21, 569–576 (2011). https://doi.org/10.1007/s00572-011-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0365-3

Keywords

Navigation