Skip to main content
Log in

Elemental composition of arbuscular mycorrhizal fungi at high salinity

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

We investigated the elemental composition of spores and hyphae of arbuscular mycorrhizal fungi (AMF) collected from two saline sites at the desert border in Tunisia, and of Glomus intraradices grown in vitro with or without addition of NaCl to the medium, by proton-induced X-ray emission. We compared the elemental composition of the field AMF to those of the soil and the associated plants. The spores and hyphae from the saline soils showed strongly elevated levels of Ca, Cl, Mg, Fe, Si, and K compared to their growth environment. In contrast, the spores of both the field-derived AMF and the in vitro grown G. intraradices contained lower or not elevated Na levels compared to their growth environment. This resulted in higher K:Na and Ca:Na ratios in spores than in soil, but lower than in the associated plants for the field AMF. The K:Na and Ca:Na ratios of G. intraradices grown in monoxenic cultures were also in the same range as those of the field AMF and did not change even when those ratios in the growth medium were lowered several orders of magnitude by adding NaCl. These results indicate that AMF can selectively take up elements such as K and Ca, which act as osmotic equivalents while they avoid uptake of toxic Na. This could make them important in the alleviation of salinity stress in their plant hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott LK (1982) Comparative anatomy of vesicular–arbuscular mycorrhizas formed on subterranean clover. Aust J Bot 30:485–499

    Article  Google Scholar 

  • Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L). Plant Sci 85:43–50

    Article  CAS  Google Scholar 

  • Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24:1311–1323

    Article  CAS  Google Scholar 

  • Arias JA, Peralta-Videa JR, Ellzey JT, Ren MH, Viveros MN, Gardea-Torresdey JL (2010) Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ Exp Bot 68:139–148

    Article  CAS  Google Scholar 

  • Ashraf M, Rahmatullah AM, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bañuls J, Primomillo E (1992) Effects of chloride and sodium on gas-exchange parameters and water relations of citrus plants. Physiol Plant 86:115–123

    Article  Google Scholar 

  • Barea JM, Werner D, Azcón-Guilar C, Azcón R (2005) Interactions of arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. In: Newton W (ed) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer

  • Bécard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Black CA, Marshall, Shaw et al. (1965) Methods of soil analysis. Agronomy No 9 Part 2, American Society of Agronomy, NA

  • Bois G, Bertrand A, Piche Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109

    Article  CAS  PubMed  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils. Prentice Hall, Upper Saddle River, NJ. USA

  • Brundrett MC, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Series, Pirie Printers, Canberra, Australia

  • Carvalho LM, Cacador I, Martins-Loucao MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  Google Scholar 

  • Chalk PM, Souza RD, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Cramer GR (2002) Sodium–calcium interactions under salinity stress. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, New York

    Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • FAO (2005) Global Network on integrated soil management for sustainable use of salt-affected soils

  • Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth 14:151–163

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Grzybowska B (2004) Arbuscular mycorrhiza of herbs colonizing a salt affected area near Krakow (Poland). Acta Soc Bot Pol Pol Tow Bot 73:247–253

    Google Scholar 

  • Hajibagheri MA, Yeo AR, Flowers TJ, Collins JC (1989) Salinity resistance in Zea-mays—fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant Cell Environ 12:753–757

    Article  CAS  Google Scholar 

  • Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem 34:1299–1307

    Article  CAS  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular–arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655

    Article  CAS  Google Scholar 

  • Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology-SGM 153:4261–4273

    Article  CAS  Google Scholar 

  • Kornitzer D (2009) Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 12:377–383

    Article  CAS  PubMed  Google Scholar 

  • Král J, Voltr J, Proska J, Gabriel J, Baldrian P, Cerny J, Svejda J (2005) PIXE determination of element distribution in Fomes fomentarius. X-ray Spectrom 34:341–344

    Article  Google Scholar 

  • Kramer D (1983) Genetically determined adaptations in roots to nutritional stress: correlation of structure and function. Plant Soil 72:167–173

    CAS  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Läuchli A, Lüttge U (2002) Salinity: environment–plants–molecules. Kluwer, New York

    Google Scholar 

  • Lazof DB, Bernstein N (1999) The NaCl-induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium nutrition. Adv Bot Res 29:113–189

    Article  CAS  Google Scholar 

  • Lefevre HW, Schofield RMS, Overley FC, MacDonald JD (1987) Scanning transmission ion microscopy as it complements particle induced X-ray microanalysis. Scan Microsc 1:879

    CAS  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mohammad MJ, Hamad SR, Malkawi HI (2003) Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environments 53:409–417

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nasr H (2003) Distribution and plant interactions of endomycorrhizal fungi along a saline soil gradient in a temperate semiarid environment. In: Abstract Book of the Fourth International Conference On Mycorrhizae ICOM4, August 10–15, 2003, Montréal, Canada, p587

  • Nasr H, Sghaier T, Ghorbal MH, Dommergues YR (1999) Variabilité génotypique de l’aptitude à la fixation symbiotique de l’azote chez Acacia cyanophylla Lindl. Can J Bot 77:77–86

    Article  Google Scholar 

  • Nogueira MA, Cardoso E, Hampp R (2002) Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil 246:1–10

    Article  CAS  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Hammer EC, Wallander H, Pallon J (2008) Phosphorus influence on elemental uptake and distribution in the mycorrhizal fungus Glomus intraradices revealed by PIXE analysis. Appl Environ Microbiol 74:4144–4148

    Article  CAS  PubMed  Google Scholar 

  • Orlic I, Siegele R, Menon DD, Markich SJ, Cohen DD, Jeffree RA, McPhail DC, Sarbutt A, Stelcer E (2002) Heavy metal pathways and archives in biological tissue. Nucl Instrum Methods Phys Res B 190:439–444

    Article  CAS  Google Scholar 

  • Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X-Ray Spectrometry 37:129–132

    Article  CAS  Google Scholar 

  • Ortiz-Cano HG, Trejo-Calzada R, Valdez-Cepeda RD, Arreola-Avila JG, Flores-Hernandez A, Lopez-Ariza B (2009) Phytoextraction of lead and cadmium in contaminated soils using pigweed (Amaranthus hybridus L.) and mycorrhiza. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente 15:161–168

    Google Scholar 

  • Overley JC, Schofield RMS, MacDonald JD, Lefevre HW (1988) Energy-loss image formation in scanning transmission ion microscopy. Nucl Instr Methods Phys Res B 30:337–341

    Article  Google Scholar 

  • Pallon J (1987) A forward scattering technique for the determination of target thickness. Nucl Instrum Methods Phys Res B 22:87–90

    Article  Google Scholar 

  • Pallon J, Auzelyte V, Elfman M, Garmer M, Kristiansson P, Malmqvist K, Nilsson C, Shariff A, Wegdén M (2003) An off-axis STIM procedure for precise mass determination and imaging. Nucl Instrum Methods Phys Res B 219–220:988–993

    Google Scholar 

  • Pallon J, Wallander H, Hammer E, Marrero NA, Auzelyte V, Elfman M, Kristiansson P, Nilsson C, Olsson PA, Wegden M (2007) Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nucl Instrum Methods Phys Res B 260:149–152

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Rabie GH, Almadini AM (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost–benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochtonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ryan CG, Jamieson DN (1993) Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping. Nucl Instrum Methods Phys Res B 77:203–214

    Article  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Saqib M, Zorb C, Schubert S (2008) Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biol 35:633–639

    Article  CAS  Google Scholar 

  • Scheloske S, Maetz M, Schussler A (2001) Heavy metal uptake of Geosiphon pyriforme. Nucl Instrum Methods Phys Res B 181:659–663

    Article  CAS  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189

    Article  CAS  PubMed  Google Scholar 

  • Schenk NC, Perez Y (1990) Manual for identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • St. Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Sudova R, Jurkiewicz A, Turnau K, Vosatka M (2007) Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–81

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na tolerance and Na transport in higher plants. Ann Bot (Lond) 91:503–527

    Article  CAS  Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–212

    CAS  PubMed  Google Scholar 

  • Turnau K, Kottke I (2005) Fungal activity as determined by micro-scale methods with special emphasis on interactions with heavy metals. In: Dighton J, White JF, Oudemans P (eds) The fungal community. CRC Press, pp 287–305

  • Turnau K, Przybylowicz WJ, Mesjasz-Przybyowicz J (2001) Heavy metal distribution in Suillus luteus mycorrhizas—as revealed by micro-PIXE analysis. Nucl Instrum Methods Phys Res B 181:649–658

    Article  CAS  Google Scholar 

  • Turnau K, Henriques FS, Anielska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environ Exp Bot 61:117–123

    Article  CAS  Google Scholar 

  • van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2007) Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol 176:175–183

    Article  PubMed  Google Scholar 

  • van Hees PAW, Rosling A, Lundstrom US, Finlay RD (2006) The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma 136:364–377

    Article  Google Scholar 

  • Wallander H, Pallon J (2005) Temporal changes in the elemental composition of Rhizopogon rhizomorphs during colonization of patches with fresh organic matter or acid-washed sand. Mycologia 97:295–303

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of Maize by a Cd-sensitive and a Cd-tolerant Glomus mossae and cadmium uptake in sand culture. Plant Soil 175:233–238

    Article  CAS  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Wolfe BE, Mummey DL, Rillig MC, Klironomos JN (2007) Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza 17:175–183

    Article  PubMed  Google Scholar 

  • Wright GC, Patten KD, Drew MC (1993) Gas-exchange and chlorophyll content of tifblue rabbiteye and sharpblue southern highbush blueberry exposed to salinity and supplemental calcium. J Am Soc Hortic Sci 118:456–463

    CAS  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum 32:297–304

    Article  Google Scholar 

  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ 55:213–221

    CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J et al (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Nancy Collins Johnson for the help with species identification of the spores. This study was made possible through financial support from the Swedish International Development Cooperation Agency (SIDA) and from The Swedish Research Council for the Environment, Agriculture Sciences and Spatial Planning (FORMAS). We acknowledge support from the National Research Institute for Rural Engineering, Water and Forest of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith C. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, E.C., Nasr, H., Pallon, J. et al. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21, 117–129 (2011). https://doi.org/10.1007/s00572-010-0316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0316-4

Keywords

Navigation