Skip to main content
Log in

The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Relatively few ectomycorrhizal fungal species are known to form sclerotia. Usually, sclerotia are initiated at the extraradical mycelium. In this study, we present anatomical and ultrastructural evidence for the formation of sclerotia directly in the hyphal mantle of the mycorrhizal morphotype Pinirhiza sclerotia. A dark-pigmented fungal strain was isolated from Pinirhiza sclerotia and identified by molecular tools as Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii s.l. As dark septate fungi are known to be mostly endophytic, resyntheses with Pinus sylvestris and A. macrosclerotiorum as well as Populus tremula × Populus tremuloides and A. macrosclerotiorum or P. fortinii s.l. were performed under axenic conditions. No mycorrhizas were found when hybrid aspen was inoculated with A. macrosclerotiorum or P. fortinii. However, A. macrosclerotiorum formed true ectomycorrhizas in vitro with P. sylvestris. Anatomical and ultrastructural features of this ectomycorrhiza are presented. The natural and synthesized ectomycorrhizal morphotypes were identical and characterized by a thin hyphal mantle that bore sclerotia in a later ontogenetic stage. The Hartig net was well-developed and grew up to the endodermis. To our knowledge, this is the first evidence at the anatomical and ultrastructural level that a close relative of P. fortinii s.l. forms true ectomycorrhizas with a coniferous host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addy HD, Hambleton S, Currah RS (2000) Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta. Mycol Res 104:1213–1221. doi:10.1017/S0953756200002896

    Article  CAS  Google Scholar 

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13. doi:10.1139/b04-171

    Article  Google Scholar 

  • Ahlich K, Rigling D, Holdenrieder O, Sieber TN (1998) Dark septate hyphomycetes in Swiss conifer forest soils surveyed using Norway-spruce seedlings as bait. Soil Biol Biochem 30:1069–1075. doi:10.1016/S0038-0717(97)00223-X

    Article  CAS  Google Scholar 

  • Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270. doi:10.1111/j.1469-8137.1996.tb01845.x

    Article  Google Scholar 

  • Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247. doi:10.1007/s00572-003-0222-0

    Article  CAS  PubMed  Google Scholar 

  • Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals 14:33–42. doi:10.1023/A:1016687021803

    Article  CAS  PubMed  Google Scholar 

  • Blaschke H (1991) Multiple mycorrhizal associations of individual calcicole host plants in the alpine grass-heath zone. Mycorrhiza 1:31–34. doi:10.1007/BF00205899

    Article  Google Scholar 

  • Bullock S, Ashford AE, Willetts HJ (1980) The structure and histochemistry of sclerotia of Sclerotinia minor Jagger II. Histochemistry of extracellular substances and cytoplasmic reserves. Protoplasma 104:333–351. doi:10.1007/BF01279777

    Article  Google Scholar 

  • Christie P, Nicolson TH (1983) Are mycorrhizas absent from the Antarctic? Trans Br Mycol Soc 80:557–560

    Article  Google Scholar 

  • Currah RS, Tsuneda A (1993) Vegetative and reproductive morphology of Phialocephala fortinii (Hyphomycetes, Mycelium radicis atrovirens) in culture. Trans Mycol Soc Jpn 34:345–356

    Google Scholar 

  • Currah RS, Van Dyk M (1986) A survey of some perennial vascular plant species native to Alberta for occurrence of mycorrhizal fungi. Can Field Nat 100:330–342

    Google Scholar 

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078. doi:10.1139/b96-131

    Article  Google Scholar 

  • Fox FM (1986a) Ultrastructure and infectivity of sclerotium-like bodies of the ectomycorrhizal fungus Hebeloma sacchariolens, on birch (Betula spp.). Trans Br Mycol Soc 87:359–369

    Article  Google Scholar 

  • Fox FM (1986b) Ultrastructure and infectivity of sclerotia of the ectomycorrhizal fungus Paxillus involutus on birch (Betula spp.). Trans Br Mycol Soc 87:627–631

    Article  Google Scholar 

  • Frenot Y, Bergstrom DM, Gloaguen JC, Tavenard R, Strullu DG (2005) The first record of mycorrhizae on sub-antarctic Heard Island: a preliminary examination. Antarct Sci 17:205–210. doi:10.1017/S0954102005002609

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Gernandt DS, Platt JL, Stone JK, Spatafora JW, Holst-Jensen A, Hamelin RC, Kohn LM (2001) Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences. Mycologia 93:915–933. doi:10.2307/3761757

    Article  CAS  Google Scholar 

  • Grenville DJ, Peterson RL, Piché Y (1985a) The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi I. Pisolithus tinctorius. Can J Bot 63:1402–1411

    Article  Google Scholar 

  • Grenville DJ, Peterson RL, Piché Y (1985b) The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi II. Paxillus involutus. Can J Bot 63:1412–1417

    Article  Google Scholar 

  • Grenville DJ, Piché Y, Peterson RL (1985c) Sclerotia as viable sources of mycelia for the establishment of ectomycorrhizae. Can J Microbiol 31:1085–1088

    Article  Google Scholar 

  • Grünig CR, Sieber TN (2005) Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov., formerly known as dark-septate endophyte Type 1. Mycologia 97:628–640. doi:10.3852/mycologia.97.3.628

    Article  PubMed  Google Scholar 

  • Grünig CR, Sieber TN, Holdenrieder O (2001) Characterization of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) amplification. Mycol Res 105:24–32. doi:10.1017/S0953756200003658

    Article  Google Scholar 

  • Grünig CR, Sieber TN, Rogers SO, Holdenrieder O (2002a) Spatial distribution of dark septate endophytes in a confined forest plot. Mycol Res 106:832–840. doi:10.1017/S0953756202005968

    Article  Google Scholar 

  • Grünig CR, Sieber TN, Rogers SO, Holdenrieder O (2002b) Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Can J Bot 80:1239–1249. doi:10.1139/b02-115

    Article  Google Scholar 

  • Grünig CR, McDonald BA, Sieber TN, Rogers SO, Holdenrieder O (2004) Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genet Biol 41:676–687. doi:10.1016/j.fgb.2004.03.004

    Article  PubMed  Google Scholar 

  • Grünig CR, Duò A, Sieber TN (2006) Population genetic analysis of Phialocephala fortinii s.l. and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fungal Genet Biol 43:410–421

    Article  PubMed  Google Scholar 

  • Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008a) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.–Acephala applanata species complex. Mycologia 100:47–67. doi:10.3852/mycologia.100.1.47

    Article  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008b) Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.–Acepahala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369. doi:10.1139/B08-108

    Article  Google Scholar 

  • Grünig CR, Queloz V, Duo A, Sieber TN (2009) Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol Res 113:207–221. doi:10.1016/j.mycres.2008.10.005

    Article  PubMed  Google Scholar 

  • Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581. doi:10.1139/b97-869

    Article  Google Scholar 

  • Harney SK, Rogers SO, Wang CJK (1997) Molecular characterization of dematiaceous root endophytes. Mycol Res 101:1397–1404. doi:10.1017/S095375629700419X

    Article  CAS  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62. doi:10.1007/BF00346707

    Article  CAS  PubMed  Google Scholar 

  • Heinonsalo J, Sen R (2007) Scots pine ectomycorrhizal fungal inoculum potential and dynamics in podzol-specific humus, eluvial and illuvial horizons one and four growth seasons after forest clear-cut logging. Can J For Res 37:404–414. doi:10.1139/X06-212

    Article  CAS  Google Scholar 

  • Holdenrieder O, Sieber TN (1992) Fungal associations of serially washed healthy non-mycorrhizal roots of Picea abies. Mycol Res 96:151–156. doi:10.1016/S0953-7562(09)80932-5

    Article  Google Scholar 

  • Jacobs A, Coetzee MPA, Wingfield BD, Jacobs K, Wingfield MJ (2003) Phylogenetic relationships among Phialocephala species and other ascomycetes. Mycologia 95:637–645. doi:10.2307/3761940

    Article  CAS  PubMed  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M-C, Kårén O, Zackrisson O (1999a) Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol 142:151–162. doi:10.1046/j.1469-8137.1999.00383.x

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M-C, Zackrisson O, Kårén O (1999b) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Mol Ecol 8:205–215. doi:10.1046/j.1365-294x.1999.00553.x

    Article  Google Scholar 

  • Jumpponen A (1999) Spatial distribution of discrete RAPD phenotypes of a root endophytic fungus, Phialocephala fortinii, at a primary successional site on a glacier forefront. New Phytol 141:333–344. doi:10.1046/j.1469-8137.1999.00344.x

    Article  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211. doi:10.1007/s005720100112

    Article  Google Scholar 

  • Jumpponen A, Mattson KG, Trappe JM (1998) Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7:261–265. doi:10.1007/s005720050190

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310. doi:10.1046/j.1469-8137.1998.00265.x

    Article  Google Scholar 

  • Kaldorf M, Renker C, Fladung M, Buscot F (2004) Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza 14:295–306. doi:10.1007/s00572-003-0266-1

    Article  PubMed  Google Scholar 

  • Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees (Berl) 1:191–194. doi:10.1007/BF00193562

    Article  Google Scholar 

  • Laursen GA, Treu R, Seppelt RD, Stephenson SL (1997) Mycorrhizal assessment of vascular plants from subantarctic Macquarie Island. Arct Alp Res 29:483–491. doi:10.2307/1551996

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonizing dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot 70:125–132. doi:10.1139/b92-017

    Article  Google Scholar 

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973. doi:10.1017/S0953756204000668

    Article  CAS  PubMed  Google Scholar 

  • Menkis A, Vasiliauskas R, Taylor AFS, Stenström E, Stenlid J, Finlay R (2006) Fungi in decayed roots of conifer seedlings in forest nurseries, afforested clear-cuts and abandoned farmland. Plant Pathol 55:117–129. doi:10.1111/j.1365-3059.2005.01295.x

    Article  CAS  Google Scholar 

  • Moore AEP, Ashford AE, Peterson RL (1991) Reserve substances in Paxillus involutus sclerotia determination by histochemistry and X-ray microanalysis. Protoplasma 163:67–81. doi:10.1007/BF01323331

    Article  Google Scholar 

  • Münzenberger B, Otter T, Wüstrich D, Polle A (1997) Peroxidase and laccase activities in mycorrhizal and non-mycorrhizal fine roots of Norway spruce (Picea abies) and larch (Larix decidua). Can J Bot 75:932–938

    Article  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic meiotic and pleomorphic speciation in fungal systematics. CABI, Washington, pp 225–233

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (eds) (2004) Mycorrhizas: anatomy and cell biology. CABI, CAB International, Wallingford, Oxon

    Google Scholar 

  • Peterson RL, Wagg C, Pautler M (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86:445–456

    Article  CAS  Google Scholar 

  • Piercey MM, Graham SW, Currah RS (2004) Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol Res 108:955–964. doi:10.1017/S0953756204000528

    Article  CAS  PubMed  Google Scholar 

  • Queloz V, Grünig CR, Sieber TN, Holdenrieder O (2005) Monitoring the spatial and temporal dynamics of a community of the tree-root endophyte Phialocephala fortinii s.l. New Phytol 168:651–660. doi:10.1111/j.1469-8137.2005.01529.x

    Article  PubMed  Google Scholar 

  • Saito K, Kuga-Uetake Y, Saito M, Peterson RL (2006) Vacuolar localization of phosphorus in hyphae of Phialocephala fortinii, a dark septate fungal root endophyte. Can J Microbiol 52:643–650. doi:10.1139/W06-018

    Article  CAS  PubMed  Google Scholar 

  • Schadt CW, Mullen RB, Schmidt SK (2001) Isolation and phylogenetic identification of a dark septate fungus associated with the alpine plant Ranunculus adoneus. New Phytol 150:747–755. doi:10.1046/j.1469-8137.2001.00132.x

    Article  CAS  Google Scholar 

  • Shaw CG III, Sidle RC (1983) Evaluation of planting sites common to a southeast Alaska clear-cut II. Available inoculum of the ectomycorrhizal fungus Cenococcum geophilum. Can J For Res 13:9–11. doi:10.1139/x83-002

    Article  Google Scholar 

  • Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half. Marcel Dekker, New York, Basel, pp 887–917

    Chapter  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1

    Article  CAS  PubMed  Google Scholar 

  • Stoyke G, Currah RS (1993) Resynthesis in pure culture of a common subalpine fungus-root association using Phialocephala fortinii and Menziesia ferruginea (Ericaceae). Arct Alp Res 25:189–193. doi:10.2307/1551812

    Article  Google Scholar 

  • Stoyke G, Egger KN, Currah RS (1992) Characterization of sterile endophytic fungi from the mycorrhizae of subalpine plants. Can J Bot 70:2009–2016. doi:10.1139/b92-250

    Article  Google Scholar 

  • Swofford DL (ed) (2001) PAUP* 4.00: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland, MA

  • Wagg C, Pautler M, Massicotte HB, Peterson RL (2008) The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza 18:103–110. doi:10.1007/s00572-007-0157-y

    Article  PubMed  Google Scholar 

  • Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2006) Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98:1065–1075. doi:10.3852/mycologia.98.6.1065

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wöllecke J (2001) Charakterisierung der Mykorrhizazönosen zweier Kiefernforste unterschiedlicher Trophie. Ph.D. thesis, Brandenburg University of Cottbus, Cottbuser Schriften zu Bodenschutz und Rekultivierung, Bd.17, Cottbus, Germany

  • Yu T, Nassuth A, Peterson RL (2001) Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol 47:741–753. doi:10.1139/cjm-47-8-741

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. doi:10.1089/10665270050081478

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, Braakhekke WG, Berendse F (2005) Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol 53:147–162

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the German Research Foundation (DFG), project Mu 1035/9-3 for the financial support. We thank Orlando Petrini for the Latin diagnosis. We are grateful to M. Roth, R. Krüger, and G. Vogt for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babette Münzenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münzenberger, B., Bubner, B., Wöllecke, J. et al. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii . Mycorrhiza 19, 481–492 (2009). https://doi.org/10.1007/s00572-009-0239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0239-0

Keywords

Navigation