Skip to main content
Log in

The structure and histochemistry of sclerotia ofSclerotinia minor Jagger

II. Histochemistry of extracellular substances and cytoplasmic reserves

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

A detailed histochemical investigation was carried out on rind, cortical and medullary hyphae of sclerotia ofSclerotinia minor Jagger. Four developmental stages, including mature sclerotia, were studied. The walls and septa of all hyphae contained chitin and β-1,3 glucans, while those of the rind contained in addition, a melanin-like pigment. An extracellular matrix, which accumulated around cortical and medullary hyphae, consisted primarily of β-1,3 glucans, although another polysaccharide, which could not be identified by histochemical methods, was also present. Phenolic material was deposited around the extracellular matrix and in the few interhyphal spaces that remained at maturity. Glycogen was present throughout the cytoplasm of hyphae of the cortex and medulla, at all stages of their differentiation. Polyphosphate granules were laid down within small vacuoles and as sclerotia matured, became most common in the cortical region. Protein bodies developed rapidly in cortical and medullary hyphae until at maturity, they were the most obvious interhyphal feature. These bodies were either round or elongated in shape, the elongated ones often lying parallel to the long axis of the hyphae, and in close association with strands of endoplasmic reticulum. No lipid reserves were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashford, A. E., Ling Lee, M., Chilvers, G. A., 1975: Polyphosphate in eucalypt mycorrhizas: a cytochemical demonstration. New Phytol.74, 447–453.

    Google Scholar 

  • Bancroft, J. D., 1976: Histochemical techniques. 2nd ed. London and Boston: Butterworths.

    Google Scholar 

  • Bartnicki-Garcia, S., 1968: Cell wall chemistry, morphogenesis, and taxonomy of fungi. A. Rev. Microbiol.22, 87–108.

    Google Scholar 

  • Bennett, J., Scott, K. J., 1971: Inorganic polyphosphates in the wheat stem rust fungus and in rust-infected wheat leaves. Physiol. Plant Pathol.1, 185–198.

    Google Scholar 

  • Bracker, C. E., 1967: Ultrastructure of fungi. Ann. Rev. Phytopathol.5, 343–374.

    Google Scholar 

  • Bullock, S., Willetts, H. J., Ashford, A. E., 1980: The structure and histochemistry of sclerotia ofSclerotinia minor Jagger I. Light and electron microscope studies on sclerotial development. Protoplasma104, 315–331.

    Google Scholar 

  • Burstone, M. S., 1955: An evaluation of histochemical methods for protein groups. J. Histochem. Cytochem.3, 32–49.

    PubMed  Google Scholar 

  • Calonge, F. D., 1970: Notes on the ultrastructure of the microconidium and stroma inSclerotinia sclerotiorum. Arch. Mikrobiol.71, 191–195.

    PubMed  Google Scholar 

  • Chet, I., Henis, Y., 1968: X-ray analysis of hyphal and sclerotial walls ofSclerotium rolfsii Sacc. Can. J. Microbiol.14, 815–816.

    PubMed  Google Scholar 

  • — —,Mitchell, R., 1967: Chemical composition of hyphal and sclerotial walls ofSclerotium rolfsii Sacc. Can. J. Microbiol.13, 137–141.

    PubMed  Google Scholar 

  • —,Timar, D., Henis, Y., 1977: Physiological and ultrastructural changes occurring during germination of sclerotia ofSclerotium rolfsii. Can. J. Bot.55, 1137–1142.

    Google Scholar 

  • Coley-Smith, J. R., Cooke, R. C., 1971: Survival and germination of fungal sclerotia. Ann. Rev. Phytopathol.9, 65–92.

    Google Scholar 

  • Cooke, R. C., 1969: Changes in soluble carbohydrates during sclerotium formation bySclerotinia sclerotiorum andS. trifoliorum. Trans. Br. mycol. Soc.53, 77–86.

    Google Scholar 

  • Farrar, J. F., 1976: The uptake and metabolism of phosphate by the lichenHypogymnia physodes. New Phytol.77, 127–134.

    Google Scholar 

  • Fawcett, D. W., 1958: The identification of paniculate glycogen and ribonucleoprotein granules in electron micrographs. J. Histochem. Cytochem.6, 95–96.

    Google Scholar 

  • Feder, N., O'Brien, T. P., 1968: Plant microtechnique: some principles and new methods. Am. J. Bot.55, 123–142.

    Google Scholar 

  • Fisher, D. B., 1968: Protein staining of ribboned epon sections for light microscopy. Histochemie16, 92–96.

    PubMed  Google Scholar 

  • Gunning, B. E. S., Steer, M. W., 1975: Ultrastructure and the biology of plant cells. London: Edward Arnold.

    Google Scholar 

  • Harborne, J. B., Mabry, T. J., Mabry, H., 1975: The flavonoids. London: Chapman & Hall Ltd.

    Google Scholar 

  • Harold, F. M., 1966: Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol. Rev.30, 772–794.

    PubMed  Google Scholar 

  • Hawker, L. E., 1965: Fine structure of fungi as revealed by electron microscopy. Biol. Rev.40, 52–92.

    PubMed  Google Scholar 

  • Hughes, J., McCully, M. E., 1975: The use of an optical brightener in the study of plant structure. Stain Technol.50, 319–329.

    PubMed  Google Scholar 

  • Jensen, W. A., 1962: Botanical histochemistry. San Francisco and London: W. H. Freeman and Co.

    Google Scholar 

  • Jones, D., 1970: Ultrastructure and composition of the cell walls ofSclerotinia sclerotiorum. Trans. Br. mycol. Soc.54, 351–360.

    Google Scholar 

  • Jorgensen, L. B., Beinke, H. D., Mabry, T. J., 1977: Protein-accumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate-containing genera:Armaracia, Capparis, Drypetes. Planta137, 215–224.

    Google Scholar 

  • Kybal, J., 1964: Changes in N and P content during growth of ergot sclerotia due to nutrition supplied by rye. Phytopathology54, 244–245.

    Google Scholar 

  • Le Tourneau, D., 1966: Trehalose and acyclic polyols in sclerotia ofSclerotinia sclerotiorum. Mycologia58, 934–942.

    Google Scholar 

  • —, 1979: Morphology, cytology, and physiology ofSclerotinia species in culture. Phytopathology69, 887–890.

    Google Scholar 

  • Lev, R., Spicer, S. S., 1964: Specific staining of sulphate groups with alcian blue at low pH. J. Histochem. Cytochem.12, 309.

    PubMed  Google Scholar 

  • Ling-Lee, M., Cilvers, G. A., Ashford, A. E., 1977: A histochemical study of phenolic materials in mycorrhizal and uninfected roots ofEucalyptus fastigata Deane and Maiden. New Phytol.78, 313–328.

    Google Scholar 

  • Mace, M. E., 1963: Histochemical localization of phenols in healthy and diseased banana roots. Physiologia Pl.16, 915–925.

    Google Scholar 

  • Massaro, E. J., Markert, C. L., 1968: Protein staining on starch gels. J. Histochem. Cytochem.16, 380–382.

    PubMed  Google Scholar 

  • Nair, N. G., White, N. H., Griffin, D. M., Blair, S., 1969: Fine structure and electron cytochemical studies ofSclerotium rolfsii Sacc. Aust. J. biol. Sci.22, 639–652.

    Google Scholar 

  • Nishi, A., 1961: Role of polyphosphate and phospholipid in germinating spores ofAspergillus niger. J. Bacteriol.81, 10–19.

    PubMed  Google Scholar 

  • O'Brien, T. P., Feder, N., McCully, M. E., 1964: Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma59, 368–373.

    Google Scholar 

  • Pearse, A. G. E., 1968: Histochemistry. Theoretical and applied. Vol. I, 3rd ed. London: J. and A. Churchill Ltd.

    Google Scholar 

  • Ramalingam, K., Ravindranath, M. H., 1970: Histochemical significance of green metachromasia to toluidine blue. Histochemie24, 322–327.

    PubMed  Google Scholar 

  • Revel, J. P., Napolitano, L., Fawcett, D. W., 1960: Identification of glycogen in electron micrographs of thin tissue sections. J. biophys. biochem. Cytol.8, 575–589.

    PubMed  Google Scholar 

  • Saito, I., 1974 a: Utilization of β-glucans in germinating sclerotia ofSclerotinia sclerotiorum (Lib.) de Bary. Ann. phytopath. Soc. Japan40, 372–374.

    Google Scholar 

  • —, 1974 b: Ultrastructural aspects of the maturation of sclerotia ofSclerotinia sclerotiorum (Lib.) de Bary. Trans. mycol. Soc. Japan15, 384–400.

    Google Scholar 

  • —, 1977: Studies on the maturation and germination of sclerotia ofSclerotinia sclerotiorum (Lib.) de Bary, a causal fungus of bean stem rot. Rep. Hokkaido Prefect. Agric. Expt. Sta.26, 1–106.

    Google Scholar 

  • Smith, M. M., McCully, M. E., 1978: A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma95, 229–254.

    Google Scholar 

  • Wang, S. Y. C., Le Tourneau, D., 1971: Carbon sources, growth, sclerotium formation and carbohydrate composition ofSclerotinia sclerotiorum. Arch. Mikrobiol.80, 219–233.

    Google Scholar 

  • Waters, H., Moore, D., Butler, R. D., 1975: Morphogenesis of aerial sclerotia ofCoprinus lagopus. New Phytol.74, 207–213.

    Google Scholar 

  • Weete, J. D., Weber, D. J., Le Tourneau, D., 1970: Hydrocarbons, free fatty acids, and amino acids of sclerotia ofSclerotinia sclerotiorum. Arch. Mikrobiol.75, 59–66.

    Google Scholar 

  • Willetts, H. J., 1971: The survival of fungal sclerotia under adverse environmental conditions. Biol. Rev.46, 387–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mrs. S.Lowry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, S., Ashford, A.E. & Willetts, H.J. The structure and histochemistry of sclerotia ofSclerotinia minor Jagger. Protoplasma 104, 333–351 (1980). https://doi.org/10.1007/BF01279777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279777

Keywords

Navigation