Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

A survey was made of the arbuscular mycorrhizal (AM) status of 73 spring ephemeral plant species that grow in the desert ecosystem of Junggar Basin, northwest China. The proportion of AM colonization ranged from 7 to 73% with a mean value of 30%. A total of 65 plant species studied were AM with coils/arbuscules or vesicles and the remaining eight species were possibly AM with no coils/arbuscules or vesicles but with fungal mycelia in the root cortex. AM fungal spores were isolated from rhizosphere samples of all 73 plant species and identified. The mean spore density was 22 per 20 ml of air-dried soil, ranging from 0 to 120. Colonization and spore density of perennials were slightly higher than of annuals and varied among different plant families. A total of 603 AM fungal spore (or sporocarp) specimens were isolated belonging to six genera, Acaulospora, Archaeopora, Entrophospora, Glomus, Paraglomus, and Scutellospora; Glomus was the dominant genus. We conclude that spring ephemerals may be highly dependent on AM associations for survival in the very infertile and arid soils of this desert ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera LE, Guteierrez JR, Moreno RJ (1998) Vesicular arbuscular mycorrhizae associated with saltbushes Atriplex spp. (Chenopodiaceae) in the Chilean arid zone. Rev Chil Hist Nat 71:291–302

    Google Scholar 

  • Allen MF (1983) Formation of vesicular–arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in cold desert. Mycologia 75:773–776

    Article  Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotropic plant Salsola kali to invasion by vesicular–arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Article  Google Scholar 

  • Augé RM, Stodola JW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115:285–295

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scient Hort 68:1–24

    Article  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373–389

    Google Scholar 

  • Biermann B, Linderman RG (1981) Quantifying vesicular–arbuscular mycorrhizae: a proposed method towards standardization. New Phytol 87:63–67

    Article  Google Scholar 

  • Collier SC, Yarnes CT, Herman RP (2003) Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. J Arid Environ 55:223–229

    Article  Google Scholar 

  • Dalpé Y (1993) Vesicular–arbuscular mycorrhiza. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, FL, pp 287–301

    Google Scholar 

  • Eom AH, David C, Hartnett A, Gail WT, Wilson C (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444

    Article  PubMed  Google Scholar 

  • Ferrol N, Calvente R, Cano C, Barea JM, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133

    Article  Google Scholar 

  • Francis R, Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25

    Article  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular–arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244:319–331

    Article  CAS  Google Scholar 

  • He XL, Mouratov S, Steinberger Y (2002) Temporal and spatial dynamics of vesicular–arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss. in the Negev Desert. J Arid Environ 52:379–387

    Article  Google Scholar 

  • Jasper DA, Abbot LK, Robson AD (1991) The effect of soil disturbance on vesicular–arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot Rev 48:597–689

    Article  CAS  Google Scholar 

  • Lapointe L, Molard J (1997) Costs and benefits of mycorrhizal infection in a spring ephemeral, Erythronium americanum. New Phytol 135:491–500

    Article  Google Scholar 

  • Li XY (2000) Preliminary studying the characteristic of roots and relations between roots and environment of spring ephemerals in Xinjiang. Arid Zone Res 17:28–34 (in Chinese)

    CAS  Google Scholar 

  • Li T, Li JP, Zhao ZW (2004) Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza 14:323–327

    Article  Google Scholar 

  • Lorgio EA, Julio RG, Peter LM (1999) Variation in soil microorganisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. J Arid Environ 42:61–70

    Article  Google Scholar 

  • Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–118

    Article  Google Scholar 

  • Mao ZM, Zhang DM (1994) Conspectus of ephemeral flora in northern Xinjiang. Arid Zone Res 11:1–26 (in Chinese)

    CAS  Google Scholar 

  • Moraes RM, De Andrade Z, Bedir E, Franck E Dayanc, Lata H, Khana I, Ana MS Pereira (2004) Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Sci 166:23–29

    Article  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Seasonality of vesicular–arbuscular mycorrhizae in sedges in a semi-arid tropical grassland. Acta Oecol 23:337–347

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges —an overview. Mycorrhiza 14:65–77

    Article  CAS  PubMed  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2001) Arbuscular mycorrhizal associations in the Simpson Desert. Aust J Bot 49:493–499

    Article  Google Scholar 

  • Pande M, Tarafdar JC (2004) Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol 26:233–241

    Article  Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular–arbuscular mycorrhizaal fungi collected from saline soils. Mycologia 76:74–84

    Article  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose SL (1981) Vesicular–arbuscular endomycorrhizal associations of some desert plants of Baja California. Can J Bot 59:1056–1060

    Article  Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of vesicular–arbuscular mycorrhizal fungi. INVAM, Univ of Florida, Gainesville, FL, USA

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Stahl PD, Christensen M (1982) Mycorrhizal fungi associated with Agropyron and Bouteloua in Wyoming sagebrush–grasslands. Mycologia 74:877–885

    Article  Google Scholar 

  • Stutz J, Morton JB (1996) Successive pot cultures reveal high species richness of indigenous arbuscular endomycorrhizal fungi in arid ecosystems. Can J Bot 74:1883–1889

    Article  Google Scholar 

  • Tarafdar JC, Praveen-Kumar (1996) The role of vesicular arbuscular mycorrhizal fungi on crop, tree and grasses grown in an arid environment. J Arid Environ 34:197–203

    Article  Google Scholar 

  • Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert plants. West N Am Nat 62:327–334

    Google Scholar 

  • Trappe JM (1981) Mycorrhizae and productivity of arid and semiarid rangelands. In: Manassah JM, Briskey EJ (eds) Advances in food-producing systems for arid and semiarid lands. Academic, New York, pp 581–600

    Chapter  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, FL, pp 5–26

    Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification functionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Wang XQ, Jiang J, Lei JQ, Zhang WM, Qian YB (2003) The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geogr Sin 58:598–605 (in Chinese)

    Google Scholar 

  • Wang XQ, Jiang J, Lei JQ, Zhao CJ (2004) Relationship between spring ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantunggut desert. Chin J Appl Ecol 15:556–560 (in Chinese)

    Google Scholar 

  • Zhang LY (2002a). Ephemeral plants in Xinjiang (I): eco-biological characteristics. J Plant 1:2–6 (in Chinese)

    Google Scholar 

  • Zhang LY (2002b) Ephemeral plants in Xinjiang (II): diversity and ecological distribution. J Plant 2:4–5 (in Chinese)

    Google Scholar 

  • Zhang LY (2002c) Ephemeral plants in Xinjiang (III): significance of community and resources. J Plant 3:4–5 (in Chinese)

    Google Scholar 

  • Zhao ZW, Xia YM, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza 11:159–162

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Liyun Zhang for his valuable help in the identification of the plant species and the National Natural Science Foundation of China (Project 30470341) and Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Feng.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

(PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z.Y., Feng, G., Christie, P. et al. Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza 16, 269–275 (2006). https://doi.org/10.1007/s00572-006-0041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0041-1

Keywords

Navigation