Skip to main content
Log in

Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The vertical niche differentiation of genera of ectomycorrhiza (ECM) was assessed in a 17-year-old Norway spruce (Picea abies [L.] Karst.) plantation on a mountainous dolomitic site (1,050 m above sea level) of the Bavarian Limestone Alps. We determined ECM anatomotypes, recorded the abundance of corresponding ECM root tips and classified them into groups of ECM exploration types, which refer to the organisation and the extent of their extramatrical mycelia. The abundance of ECM was highest in the organic soil layers, compared to the mineral soil horizon. The ordination of the ECM communities and of the exploration types revealed segregation related to soil horizon properties. While Cenococcum geophilum preferred the organic soil layers, Lactarius spp., Tomentella spp. and Craterellus tubaeformis were generally most abundant in the mineral soil horizons. Cenococcum geophilum was the predominant species, possibly based on enhanced competitiveness under the prevailing site conditions. The short-distance exploration types (e.g. C. geophilum) preferentially colonised the organic soil layer, whereas the contact types (e.g. most of the Tomentella spp., C. tubaeformis) together with medium-distance types (e.g. Amphinema byssoides) were primarily associated with the underlying A-horizons. Therefore, the soil horizons had an important effect on the distribution of ECM and on their community structure. The spatial niche differentiation of ECM genera and exploration types is discussed in regard to specific physico-chemical properties of soil horizon and the assumed ecophysiological strategies of ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1989) Carbon transfer associated with assimilation of organic nitrogen sources by silver birch (Betula pendula Roth). Trees 3(1):17–23

    Article  Google Scholar 

  • Agerer R (1987) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Methods in microbiology, vol 23. Academic, London, pp 26–73

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae — a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2002) A proposal to encode ectomycorrhizae for ecological studies. In: Agerer R (ed) Colour atlas of ectomycorrhizae, 12th delivery. Einhorn, Schwäbisch Gmünd, pp 57i–62i

    Google Scholar 

  • Agerer R, Göttlein A (2003) Correlations between projection area of ectomycorrhizae and H2O extractable nutrients in organic soil layers. Mycol Prog 2(1):45–52

    Article  Google Scholar 

  • Agerer R, Schloter M, Hahn C (2000) Fungal enzymatic activity in fruitbodies. Nova Hedwig 71(3–4):315–336

    Google Scholar 

  • Agerer R, Grote R, Raidl S (2002) The new method ‘micromapping’, a means to study species-specific associations and exclusions of ectomycorrhizae. Mycol Prog 1(2):155–166

    Article  Google Scholar 

  • Baier R (2004) Ernährungszustand und mögliche Anpassungsmechanismen der Fichte (Picea abies [L.] Karst. ) auf Dolomitstandorten der Bayerischen Kalkalpen — Ergebnisse eines Düngeversuches an jungen Schutzwaldsanierungspflanzen. Schw Z Forstwes 155(9):378–391

    Article  Google Scholar 

  • Bayerisches Geologisches Landesamt (1967) Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Blatt Nr. 8240 Marquartstein. Bayerisches Geologisches Landesamt, München

    Google Scholar 

  • Bayerisches Geologisches Landesamt (1981) Erläuterungen zur Geologischen Karte von Bayern 1:500 000. Bayerisches Geologisches Landesamt, München

    Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101(11):1348–1354

    Article  CAS  Google Scholar 

  • BMELF, Bundesminister für Ernährung, Landwirtschaft und Forsten (ed) (1990) Bundesweite Bodenzustandserfassung im Wald — Arbeitsanleitung. Bonn

  • Bochter R, Neuerburg W, Zech W (1981) Humus und Humusschwund im Gebirge. Nationalpark Berchtesgaden, Forschungsberichte 2

    Google Scholar 

  • Brand F (1991) Ektomykorrhizen an Fagus sylvatica. Charakterisierung und Identifizierung, ökologische Kennzeichnung und unsterile Kultivierung. Libri Botanici 2:1–229

    Google Scholar 

  • Brand F, Taylor AFS, Agerer R (1992) Quantitative Erfassung bekannter Ektomykorrhizen in Fichtenversuchsflächen nach Behandlung mit saurer Beregnung und Kalkung. Bericht BMFT-Projekt Nr. 0339175F

  • Brownlee C, Duddridge JA, Malibani A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming interplant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443

    Article  Google Scholar 

  • Buol SW, Hole FD, McCracken RJ, Soutard RJ (1997) Soil genesis and classification. Iowa State University Press, Ames

    Google Scholar 

  • Cairney JWG, Chambers SM (eds) (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cline ET, Ammirati JF, Edmonds RL (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562

    Article  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Dickie IA, Xu X, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature (Lond) 287:834–836

    Article  Google Scholar 

  • Eaton GK, Ayres MP (2002) Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition. Mycologia 94(6):921–932

    Article  CAS  Google Scholar 

  • Enders G (1979) Theoretische Topoklimatologie. Nationalpark Berchtesgaden, Forschungsberichte 1

    Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ectomycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 163–193

    Google Scholar 

  • Ewald J (1997) Bergmischwälder der Bayerischen Alpen— Soziologie, Standortsbindung und Verbreitung. J-Cramer, Berlin

    Google Scholar 

  • Fliri F (1975) Das Klima der Alpen im Raume Tirols. Monograph. Z. Landeskde. Tirols, Innsbruck

  • Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 20:599–606

    PubMed  Google Scholar 

  • Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133

    Article  PubMed  CAS  Google Scholar 

  • Göbl F, Thurner S (1996) Evaluation of forest sites by means of condition assessment of mycorrhizae and fine roots. Phyton (Horn) 36(4):95–108

    Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153(4):352–354

    Article  CAS  Google Scholar 

  • Haupolter M (1999) Zustand von Bergwäldern in den nördlichen Kalkalpen Tirols und daraus ableitbare Empfehlungen für eine nachhaltige Bewirtschaftung. Diss. Univ. f. Bodenkultur, Wien

    Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76(2):493–509

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum part I. Herbaria of the world, 8th edn. Regnum Vegetabile 120. New York Botanical Garden, New York

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  PubMed  CAS  Google Scholar 

  • Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630

    Article  PubMed  Google Scholar 

  • Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius spec. in relation to soil water potential in five beech forests. Plant Soil 255(2):487–494

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. University Press, Cambridge

    Google Scholar 

  • Jonsson L, Dahlberg A, Brandrud T-E (2000) Spatiotemporal distribution of an ectomycorrhizal community in an oligotroph Swedish Picea abies forest subjected to experimental nitrogen addition: above- and below-ground views. For Ecol Manag 132:143–156

    Article  Google Scholar 

  • Kårén O, Högberg N, Dahlberg A, Grip K, Nylund J-E (1996) Influence of drought on ectomycorrhizal species composition — morphotype versus PCR identification. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. European Commission, Brussels, pp 43–46

    Google Scholar 

  • Katzensteiner K (2003) Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a lithic leptosol in the Northern Limestone Alps. Plant Soil 250:59–73

    Article  CAS  Google Scholar 

  • Kottke I, Oberwinkler F (1988) Vergleichende Untersuchung der Feinwurzelsysteme und der Anatomie von Mycorrhizen nach Trockenstreß und Düngemaßnahmen. KfK-PEF 39

  • Kuyper TW, Landeweert R (2002) Vertical niche differentiation by hyphae of ectomycorrhizal fungi in soil. New Phytol 156:321–326

    Article  Google Scholar 

  • Landeweert R, Leeflang P, Smit E, Kuyper T (2005) Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza 15(1):1–6

    Article  PubMed  Google Scholar 

  • Liu JC, Keller T, Runkel KH, Payer HD (1994) Bodenkundliche Untersuchungen zu Ursachen des Nadelverlustes der Fichten (Picea abies [L.] Karst.) auf Kalkstandorten der Alpen. Forstwiss Cent bl 113:86–100

    Article  Google Scholar 

  • Lozan JL, Kausch H (2004) Angewandte Statistik für Naturwissenschaftler. Wissenschaftliche Auswertungen, Hamburg

    Google Scholar 

  • Lüscher F (1990) Untersuchung zur Höhenentwicklung der Fichtennaturverjüngung im inneralpinen Gebirgswald. Ph.D. thesis, ETH Zürich Nr. 8879

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Meister G (1969) Ziele und Ergebnisse forstlicher Planung im oberbayerischen Hochgebirge. Forstwiss Cent bl 88:97–130

    Article  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151

    Article  Google Scholar 

  • Pigott CD (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92:513–517

    Article  Google Scholar 

  • Ponge JF (1990) Ecological study of a forest humus by observing a small volume I. Penetration of pine litter by mycorrhizal fungi. Eur J For Pathol 20:290–303

    Article  Google Scholar 

  • Read DJ (1995) Ectomycorrhizas in the ecosystem: structural, functional and community aspects. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of ectomycorrhizae: molecular approaches. Plenum, New York, pp 1–23

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Sandhage-Hofmann A (1993) Wachstum und Nährstoffversorgung von Feinwurzeln unterschiedlich geschädigter Fichten auf Böden aus Kalkgestein (Wank-Massiv). Abschlußbericht, Lehrstuhl für Bodenkunde und Bodengeographie, Universität Bayreuth

  • Scheffer-Schachtschabel (2002) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Sittig U (1999) Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvatica L.) Ber Forschungszentrums Waldökosysteme, Reihe A, Bd. 162

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Ecological studies 81. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    Article  CAS  Google Scholar 

  • Tedersoo L, Koljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    Article  CAS  Google Scholar 

  • Trojanowski J, Haider K, Hüttermann A (1984) Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139(2–3):202–206

    Article  CAS  Google Scholar 

  • Urban A, Weiß M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107(1):3–14

    Article  PubMed  Google Scholar 

  • van der Heijden EW, Sanders IR (eds) (2002) Mycorrhizal ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC (1981) Dynamics of ectomycorrhizae in Abies amabilis stands: the role of Cenococcum graniforme. Holarct Ecol 4:167–173

    Google Scholar 

  • Worley JF, Hacskaylo E (1959) The effect of available soil moisture on the mycorrhizal association of Virginia pine. For Sci 5(3):267–268

    Google Scholar 

  • Zierhut M (2003) Die Geschichte der Traunsteiner Salinenwälder. Forstliche Forschungsberichte, München 194

    Google Scholar 

Download references

Acknowledgements

The project B63 was financed by the Bavarian Ministry of Forestry and Agriculture. The authors would like to thank Daniel Glaser, Christine Pfab and Rita Heibl for excellent field work and laboratory measurements. Last but not least the authors wish to thank the two anonymous reviewers for their useful comments, as well as Mrs. Dr. Jacquie van der Waals for the language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Baier.

Appendix

Appendix

Ectomycorrhizal material

The isolated ECM are kept as voucher specimens in M (Holmgren et al. 1990): Germany, Bayern, Marquartstein, Rottauer Alm 47°48′00″N, 12°22′30″E, 1,050 m above sea level.

Amphinema byssoides (Pers.) J.Erikss. AMP-01: JI 154, leg. 09.10.02—JI 226, leg. 09.10.02—JI 074, leg. 03.08.02—JI 119, leg. 26.08.02—JI 103, leg. 26.08.02—JI 105, leg. 26.08.02—JI 064, leg. 03.08.02—JI 085, leg. 03.08.02—JI 245, leg. 09.10.02—JI 203, leg. 09.10.02—JI 127, leg. 26.08.02—JI 264, leg. 09.10.02.—Cenococcum geophilum Fr. CEN-01: JI 076, leg. 03.08.02—JI 082, eg. 03.08.02—JI 091, leg. 26.08.02—JI 065, leg. 03.08.02—JI 02, leg. 26.06.02.—Chroogomphus sp. CHR-00: JI 059, leg. 03.08.02—JI 057, leg. 03.08.02.—Chroogomphus helveticus (Singer) Moser CHR-01: JI 050, leg. 03.08.02—JI 220, leg. 09.10.02—JI 222, leg. 09.10.02.—Chroogomphus helveticus CHR-02: JI 081, leg. 03.08.02—JI 051, leg. 03.08.02—JI 258, leg. 09.10.02—JI 169, leg. 09.10.02—JI 093, leg. 26.08.02—JI 111, leg. 26.08.02.—Cortinarius sp. COR-00: JI 040, leg. 03.08.02—JI 078, leg. 03.08.02—JI 185, leg. 09.10.02—JI 187, leg. 09.10.02—JI 190, leg. 09.10.02—JI 276, leg. 09.10.02—JI 171, leg. 09.10.02—JI 174, leg. 09.10.02—JI 098, leg. 26.08.02—JI 107, leg. 26.08.02—JI 133, leg. 26.08.02—JI 136, leg. 26.08.02—JI 121, leg. 26.08.02—JI 196, leg. 09.10.02.—Craterellus tubaeformis (Bull.)Quél. CRA-01: JI 255, leg. 09.10.02 —JI 173, leg. 09.10.02—JI 210, leg. 09.10.02—JI 215, leg. 09.10.02—JI 219, leg. 09.10.02.—Dermocybe sp. DER-00: JI 253, leg. 09.10.02—JI 227, leg. 09.10.02—JI 228, leg. 09.10.02—JI 233, leg. 09.10.02—JI 237, leg. 09.10.02—JI 238, leg. 09.10.02—JI 240, leg. 09.10.02—JI 241, leg. 09.10.02—JI 118, leg. 26.08.02—JI 080, leg. 03.08.02—JI 049, leg. 03.08.02—JI 259, leg. 09.10.02—JI 162, leg. 09.10.02—JI 184, leg. 09.10.02—JI 186, leg. 09.10.02—JI 189, leg. 09.10.02—JI 256, leg. 09.10.02—JI 275, leg. 09.10.02—JI 170, leg. 09.10.02—JI 211, leg. 09.10.02—JI 212, leg. 09.10.02—JI 216, leg. 09.10.02—JI 095, leg. 26.08.02—JI 140, leg. 26.08.02—JI 100, leg. 26.08.02—JI 131, leg. 26.08.02—JI 132, leg. 26.08.02—JI 135, leg. 26.08.02—JI 272, leg. 09.10.02—JI 181, leg. 09.10.02—JI 110, leg. 26.08.02—JI 125, leg. 26.08.02—JI 126, leg. 26.08.02—JI 054, leg. 03.08.02—JI 055, leg. 03.08.02—JI 069, leg. 03.08.02—JI 159, leg. 09.10.02—JI 265, leg. 09.10.02—JI 267, leg. 09.10.02.—Hebeloma sp. HEB-00: JI 073, leg. 03.08.02—JI 043, leg. 03.08.02—JI 045, leg. 03.08.02—JI 047, leg. 03.08.02—JI 117, leg. 26.08.02—JI 262, leg. 09.10.02—JI 053, leg. 03.08.02—JI 038, leg. 03.08.02—JI 161, leg. 09.10.02—JI 194, leg. 09.10.02 —Hydnellum sp. HYD-00 Inocybe sp. INO-01: JI 052, leg. 03.08.02—JI 163, leg. 09.10.02—JI 099, leg. 26.08.02—JI 088, leg. 03.08.02—JI 152, leg. 09.10.02—JI 204, leg. 09.10.02—JI 207, leg. 09.10.02.—Inocybe sp. INO-02: JI 179, leg. 09.10.02—JI 246, leg. 09.10.02.—Lactarius sp. LAC-00: JI 153, leg. 09.10.02—JI 188, leg. 09.10.02—JI 198, leg. 09.10.02—JI 150, leg. 09.10.02—JI 122, leg. 26.08.02—JI 130, leg. 26.08.02—JI 063, leg. 03.08.02.—Lactarius deterrimus Gröger LAC-01: JI 141b, leg. 26.08.02—JI 183, leg. 09.10.02—JI 067, leg. 03.08.02—JI 060, leg. 03.08.02—JI 083, leg. 03.08.02—JI 250, leg. 09.10.02—JI 200, leg. 09.10.02—JI 208, leg. 09.10.02—JI 034, leg. 03.08.02—JI 035, leg. 03.08.02—JI 039, leg. 03.08.02.—Lactarius sp. LAC-02: JI 257, leg. 09.10.02—JI 273, leg. 09.10.02—JI 269, leg. 09.10.02—JI 270, leg. 09.10.02.—Ramaria sp. RAM-00: JI 271, leg. 09.10.02—JI 178, leg. 09.10.02—JI 113, leg. 26.08.02—JI 056, leg. 03.08.02—JI 036, leg. 03.08.02.—Russula sp. RUS-00: JI 180, leg. 09.10.02.—Russula cf. densifolia Secr. ex Gillet RUS-01: JI 124, leg. 26.08.02—JI 037, leg. 03.08.02—JI 032, leg. 26.06.02.—Russula cf. sanguinea (Bull.)Fr. RUS-02: JI 172, leg. 09.10.02.—Russula cf. vinosa Lindblad RUS-03: JI 086, leg. 03.08.02.—Sebacina sp. SEB-01 Tomentella sp. TOM-00: JI 145, leg. 26.08.02—JI 149, leg. 26.08.02—JI 089, leg. 03.08.02—JI 202, leg. 09.10.02—JI 025, leg. 26.06.02—JI 023, leg. 26.06.02.—Tomentella cf. pilosa (Burt)Bourd.&Galz.TOM-01: JI 155, leg. 09.10.02—JI 230, leg. 09.10.02—JI 232, leg. 09.10.02—JI 070, leg. 03.08.02—JI 071, leg. 03.08.02—JI 079, leg. 03.08.02—JI 066, leg. 03.08.02—JI 244, leg. 09.10.02—JI 248, leg. 09.10.02—JI 151, leg. 09.10.02—JI 209, leg. 09.10.02—JI 112, leg. 26.08.02.—Tomentella sp. TOM-02: JI 260, leg. 09.10.02—JI 144, leg. 26.08.02—JI 143, leg. 26.08.02.—Tomentella sp. TOM-03: JI 168, leg. 09.10.02—JI 166, leg. 09.10.02—JI 213, leg. 09.10.02—JI 217, leg. 09.10.02—JI 224, leg. 09.10.02.—Tomentella sp. TOM-04: JI 129, leg. 26.08.02.—Tomentella sp. TOM-05: JI 148, leg. 26.08.02—JI 142, leg. 26.08.02—JI 139, leg. 26.08.02—JI 084, leg. 03.08.02—JI 263, leg. 09.10.02.—Tomentella sp. TOM-06: JI 242, leg. 09.10.02—JI 223, leg. 09.10.02—JI 225, leg. 09.10.02—JI 243, leg. 09.10.02—JI 205, leg. 09.10.02—JI 193, leg. 09.10.02—JI 197a, leg. 09.10.02—JI 197b, leg. 09.10.02.—Tomentella sp. TOM-07: JI 234, leg. 09.10.02—JI 191, leg. 09.10.02—JI 274, leg. 09.10.02—JI 251, leg. 09.10.02.—Tomentella sp. TOM-08: JI 206, leg. 09.10.02—JI 160, leg. 09.10.02.—Tomentella sp. TOM-09: JI 077, leg. 03.08.02—JI 148b, leg. 26.08.02—JI 261, leg. 09.10.02—JI 094, leg. 26.08.02—JI 138, leg. 26.08.02—JI 102, leg. 26.08.02—JI 109, leg. 26.08.02—JI 137, leg. 26.08.02—JI 114, leg. 26.08.02—JI 128, leg. 26.08.02—JI 068, leg. 03.08.02—JI 195, leg. 09.10.02.—Tuber sp. TUB-00: JI 247, 09.10.02.—Tuber cf. borchii Vittad. TUB-01: JI 249, 09.10.02—JI 199, 09.10.02—JI 123, 26.08.02.—Tuber cf. melanosporum Vittad. TUB-02: JI 041, 03.08.02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baier, R., Ingenhaag, J., Blaschke, H. et al. Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16, 197–206 (2006). https://doi.org/10.1007/s00572-006-0035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0035-z

Keywords

Navigation