Skip to main content
Log in

Ectomycorrhizal Communities Associated with the Legume Acacia spirorbis Growing on Contrasted Edaphic Constraints in New Caledonia

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study aims to characterize the ectomycorrhizal (ECM) communities associated with Acacia spirorbis, a legume tree widely spread in New Caledonia that spontaneously grows on contrasted edaphic constraints, i.e. calcareous, ferralitic and volcano-sedimentary soils. Soil geochemical parameters and diversity of ECM communities were assessed in 12 sites representative of the three mains categories of soils. The ectomycorrhizal status of Acacia spirorbis was confirmed in all studied soils, with a fungal community dominated at 92% by Basidiomycota, mostly represented by/tomentella-thelephora (27.6%), /boletus (15.8%), /sebacina (10.5%), /russula-lactarius (10.5%) and /pisolithus-scleroderma (7.9%) lineages. The diversity and the proportion of the ECM lineages were similar for the ferralitic and volcano-sedimentary soils but significantly different for the calcareous soils. These differences in the distribution of the ECM communities were statistically correlated with pH, Ca, P and Al in the calcareous soils and with Co in the ferralitic soils. Altogether, these data suggest a high capacity of A. spirorbis to form ECM symbioses with a large spectrum of fungi regardless the soil categories with contrasted edaphic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fritsch E (2012) Les sols. In: Bonvallot J, Gay JC, Habert E (eds) Atlas de la Nouvelle-Calédonie. IRD, Marseille, pp 73–76

    Google Scholar 

  2. Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon JM, Chalopin M, Birnbaum P, Rigault F, Dagostini G, Tinel J, Lowry IIPP (2012) The taxonomic reference base Florical and characteristics of the native vascular flora of New Caledonia. Adansonia 34:179–221

    Article  Google Scholar 

  3. Labillardière JJ (1825) Sertum austro-caledonicum. Parisiis, ex Typographia dominæ Huzard (née Vallat la Chapelle), viâ de l’Eperon Saint-André-des-Arts 7:69

  4. Brown GK, Murphy DJ, Kidman J, Ladiges PY (2012) Phylogenetic connections of phyllodinous species of Acacia outside Australia are explained by geological history and human-mediated dispersal. Aust Syst Bot 25:390–403

    Article  Google Scholar 

  5. Jaffré T, Rigault F, Sarrailh JM (1994) La végétalisation des anciens sites miniers. Bois For Trop 242:45–57

    Google Scholar 

  6. Grangeteau C, Ducousso M, Fritsch E, Juillot F, Jourand P, Acherar S, Lebrun M, Klonowska A (2012) Diversity of nitrogen fixing bacteria associated to the new Caledonian ubiquitous tree Acacia spirorbis. In: EGU General Assembly (ed) Abstracts of European Geosciences Union, Vienna, Austria, 4892

  7. Ducousso M, Galiana A, Prin Y, Hannibal L, Jourand P, Klonowska A, Carriconde F, Lebrun M, Fritsch E, Juillot F, Amir H (2014) Acacia spirorbis a model plant to study the contribution of symbiotic root microorganisms in plant adaptation to soil constraints: news and prospects. In: Griffin R (ed) Proceedings of Acacia 2014 conference—sustaining the future of Acacia plantation forestry. IUFRO Acacia 2014, Hue city, Vietnam, p 51

  8. Jourand P, Hannibal L, Majorel C, Mengant S, Ducousso M, Lebrun M (2014) Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. J Plant Physiol 171:164–172

    Article  CAS  Google Scholar 

  9. Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiol Ecol 72:238–249

    Article  CAS  Google Scholar 

  10. Moser MA, Frank JL, D’Allura JA, Southworth D (2009) Ectomycorrhizal communities of Quercus garryana are similar on serpentine and nonserpentine soils. Plant Soil 315:185–194

    Article  CAS  Google Scholar 

  11. Branco S (2010) Serpentine soils promote ectomycorrhizal fungal diversity. Mol Ecol 19:5566–5576

    Article  Google Scholar 

  12. Branco S, Ree RH (2010) Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5:e11757

    Article  Google Scholar 

  13. Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD (2010) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

    Article  CAS  Google Scholar 

  14. Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau PA, Gardes M (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198:1228–1238

    Article  CAS  Google Scholar 

  15. Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:6213 1266688/1–10

    Article  Google Scholar 

  16. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes. Application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  17. Chesworth W, Arbestain MC, Macias F, Spaargaren O, Mualen Y, Morel-Seytoux HJ, Horwath WR, Almendros G, Grossl PR, Sparks DL, Fairbridge RW, Singer A, Eswaran H, Micheli E (2008) Classification of soils: world reference base (WRB) for soils resources. In: Chesworth W (ed) Encyclopedia of Soil Science. Springer, Netherland ISBN: 978-1-4020-3995-9

    Chapter  Google Scholar 

  18. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gefland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, London, pp 315–322

    Google Scholar 

  19. Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo massif, New Caledonia. Mycorrhiza 16:449–458

    Article  Google Scholar 

  20. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. https://doi.org/10.1111/2041-210X.12073

    Article  Google Scholar 

  21. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  Google Scholar 

  22. Abarenkov K, Tedersoo L, Nilsson RH et al (2010) PlutoF a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinformatics Online 6:189–196

    Google Scholar 

  23. Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013) The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 8:e55160

    Article  CAS  Google Scholar 

  24. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  Google Scholar 

  25. Chao A, Chiu CH, Jost L (2016) Statistical challenges of evaluating diversity patterns across environmental gradients in mega-diverse communities. J Veg Sci 27:434–438

    Article  Google Scholar 

  26. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  27. Zack JC, Willig MR (2004) Fungal biodiversity and patterns. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic, San Diego, pp 59–75

    Chapter  Google Scholar 

  28. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  29. R Development Core Team (2011) “R: a language and environment for statistical computing”. R foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org/

  30. Reddell P, Warren RM (1987) Inoculation of acacias with mycorrhizal fungi potential benefits in Australian acacias in developing countries. ACIAR Proceedings 16:50–53

    Google Scholar 

  31. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    Article  CAS  Google Scholar 

  32. Ducousso M, Duponnois R, Thoen D, Prin Y (2012) Diversity of ectomycorrhizal fungi associated with Eucalyptus in Africa and Madagascar. Internat J For Res ID 450715

  33. Waseem M, Ducousso M, Prin Y, Domergue O, Hannibal L, Majorel C, Jourand P, Galiana A (2017) Ectomycorrhizal fungal diversity associated with endemic Tristaniopsis spp. (Myrtaceae) in ultramafic and volcano-sedimentary soils in New Caledonia. Mycorrhiza 27(4):407–413

    Article  Google Scholar 

  34. Prin Y, Ducousso M, Tassin J, Béna G, Jourand P, Dumontet V, Moulin L, Contesto C, Ambrosi JP, Chaintreuil C, Dreyfus B, Lebrun M (2012) Ectotrophic mycorrhizal symbioses are dominant in natural ferralitic forest ecosystems of New Caledonia. In: Hafidi M, Duponnois R (eds) The mycorrhizal symbioses in Mediterranean environment. Nova Science, New York, pp 25–48

    Google Scholar 

  35. Marx DH, Hatch AB, Mendicino JF (1977) High soil fertility decreases sucrose content and susceptibility of loblolly pine roots to ectomycorrhizal infection by Pisolithus tinctorius. Can J Bot 55(12):1569–1574

    Article  CAS  Google Scholar 

  36. Kranabetter JM, Friesen J, Gamiet S, Kroeger P (2009) Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests. Mycorrhiza 19(8):535–548

    Article  CAS  Google Scholar 

  37. Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136

    Article  Google Scholar 

  38. Chambers SM, Hitchcock CJ, Cairney JWG (2005) Ectomycorrhizal mycobionts of Pisonia grandis on coral cays in the Capricorn-bunker group, Great Barrier Reef, Australia. Mycol Res 109:1105–1111

    Article  Google Scholar 

  39. Hilszczanska D, Sierota Z (2006) Persistence of ectomycorrhizas by Thelephora terrestris on outplanted Scots pine seedlings. Acta. Mycologia 41(2):313–318

    Google Scholar 

  40. Jakucs E, Erős-Honti Z (2008) Morphological-anatomical characterization and identification of Tomentella ectomycorrhizas. Mycorrhiza 18:277–285

    Article  Google Scholar 

  41. Peintner U, Dämmrich F (2012) Tomentella alpina, an important mycobiont of alpine ectotrophic plants. Mycol Prog 11:109–119

    Article  Google Scholar 

  42. Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472

    Article  CAS  Google Scholar 

  43. Smith SE, Read D (2008) Mycorrhizal symbiosis3rd edn. Academic, London

    Google Scholar 

  44. Laliberte E, Lambers H, Burgess TI, Wright SJ (2014) Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol 206:507–521

    Article  Google Scholar 

  45. Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249

    Article  Google Scholar 

  46. Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2014) Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct Ecol 28:819–828

    Article  Google Scholar 

  47. De Beeck MO, Lievens B, Busschaert P, Rineau F, Smits M, Vangronsveld J, Colpaert JV (2015) Impact of metal pollution on fungal diversity and community structures. Environ Microbiol 17:2035–2047

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of an industrial agreement through the French program of PhD training research CIFRE with grant number N° 2013/1434 involving the industrial company Koniambo Nickel SAS. In addition, this work was supported by the French National Agency for Research (ANR) financial support through the BIOADAPT Program 2012 [grant number ANR-12-ADAP-0017 ADASPIR].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ducousso.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 77 kb)

ESM 2

(DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houles, A., Vincent, B., David, M. et al. Ectomycorrhizal Communities Associated with the Legume Acacia spirorbis Growing on Contrasted Edaphic Constraints in New Caledonia. Microb Ecol 76, 964–975 (2018). https://doi.org/10.1007/s00248-018-1193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1193-1

Keywords

Navigation