Skip to main content

Advertisement

Log in

The piezoresistive performances of the devices with fullerene-doped MEH-PPV films

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A series of devices with the structure of ITO\poly(methoxy-5-(2′-ethylhexyloxy)-1,4-phyenylenevinylene) (MEH-PPV):fullerene (C60, 0 ~ 60 wt%)\Al were fabricated and measured. It is found that the device with 20 wt% C60 concentration exhibited an optimized performance for the role of piezoresistive sensing. The piezoresistive coefficient showed 0.12 ~ 0.32 Pa−1 in the pressure range of 0 ~ 396 kPa. We measured the 20 wt% C60-doped MEH-PPV film using a nanoindentation tester with a flat punch and obtained its Young’s modulus at equilibrium state (E0) to be ~ 170 MPa. The present work shows that a proper amount of fullerene doped in MEH-PPV film would improve the conductivity of the film, thus leading an enhanced working current density, increasing the current signal for sensing the applied stress, while the necessary elasticity or resilience of the films are maintained. The device performance is optimized through changing the C60 doping concentration to be 20 wt%, approaching a good balance of elasticity and conductivity. Therefore, the device shows a better general performance than the undoped device, exhibiting a better prospect for tactile sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alegret N, Dominguez-Alfaro A, Salsamendi M, Gomez IJ, Calvo J, Mecerreyes D, Prato M (2017) Effect of the fullerene in the properties of thin PEDOT/C60 films obtained by co-electrodeposition. Inorg Chim Acta 468:239–244

    Article  Google Scholar 

  • Aruna P, Suresh K, Joseph CM (2015) Effect of fullerene doping on the electrical properties of P3HT/PCBM layers. Mat Sci Semicon Proc 36:7–12

    Article  Google Scholar 

  • Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W, Huang J (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7(1):12806

    Article  Google Scholar 

  • Bhardwaj J, Vishnoi R, Sharma GD, Asokan K, Singhal R (2020) Mapping the local structure of fullerene C60 and Cu–C60 nanocomposite thin films by gamma rays irradiation. Mater Chem Phys 252:123192

    Article  Google Scholar 

  • Cao XA, Jiang ZY, Zhang YQ (2011) Organic thin film structures for high-sensitivity imaging of contact stress distributions. Org Electron 12(2):306–311

    Article  Google Scholar 

  • Dai W, Zhang B, Kang Y, Chen H, Zhong G, Li Y (2013) The stress-affected carrier injection and transport in organic semiconductor devices. J Phys D Appl Phys 46(38):385103

    Article  Google Scholar 

  • Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609

    Article  Google Scholar 

  • Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5(1):1–8

    Google Scholar 

  • He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1(1):42–46

    Article  MathSciNet  Google Scholar 

  • Hou W, Gao L, Tian Y, Yan W, Hou Y, Li J, Zhong G (2017) Stress-induced variation of MDMO-PPV film thickness and resistance. Synthetic Met 226:113–118

    Article  Google Scholar 

  • Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S, Kim JH, Choi SH, Hyeon T, Kim D (2014) Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5(1):1–11

    Google Scholar 

  • Kodzasa T, Nobeshima D, Kuribara K, Uemura S, Yoshida M (2017) Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor. Jpn J Appl Phys 56(4S):04CL09

    Article  Google Scholar 

  • Li Y, Cheng XY, Leung MY, Tsang J, Yuen TXM, MCW. (2005) A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Met 155(1):89–94

    Article  Google Scholar 

  • Li J, Li J, Hou Y, Hou Y, Wang Y, Wang Y, Ye F, Ye F, Zhong G, Zhong G (2019) The piezoresistance of a device with polyphenylenevinylene derivative PSS-PPV film. Microsyst Technol 25(2):423–430

    Article  Google Scholar 

  • Liao S, Jhuo H, Cheng Y, Chen S (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25(34):4766–4771

    Article  Google Scholar 

  • Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  Google Scholar 

  • Lötters JC, Olthuis W, Veltink PH, Bergveld P (1997) The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng 7(3):145–147

    Article  Google Scholar 

  • Lu N, Kim D (2014) Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 1(1):53–62

    Article  Google Scholar 

  • Mansuroglu D, Uzun-Kaymak IU (2017) Enhancement of electrical conductivity of plasma polymerized fluorene-type thin film under iodine and chlorine dopants. Thin Solid Films 636:773–778

    Article  Google Scholar 

  • Milne JS, Rowe ACH, Arscott S, Renner C (2010) Giant Piezoresistance Effects in Silicon Nanowires and Microwires. PHYS REV LETT 105(22):226802

    Article  Google Scholar 

  • Mirza F, Sahasrabuddhe RR, Baptist JR, Wijesundara MBJ, Lee WH, Popa DO (2016) Piezoresistive pressure sensor array for robotic skin. In: D. Popa and M. Wijesundara (Eds) Proceedings of SPIE, pp. 98590K-98590K-12, SPIE, Baltimore, Maryland, United States

  • Niu L, Guan Y (2009) Fullerene-doped hole transport NPB layer in organic light-emitting devices. Acta Phys Sin-Ch Ed 58(7):4931–4935

    Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford

    Google Scholar 

  • Schwartz G, Tee BCK, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4(1):1–8

    Article  Google Scholar 

  • Smilowitz L, McBranch D, Klimov V, Grigorova M, Robinson JM, Weyer BJ, Koskelo A, Mattes BR, Wang H, Wudl F (1997) Fullerene doped glasses as solid state optical limiters. Synthetic Met 84(1–3):931–932

    Article  Google Scholar 

  • Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci 102(35):12321–12325

    Article  Google Scholar 

  • Sun X, Sun J, Li T, Zheng S, Wang C, Tan W, Zhang J, Liu C, Ma T, Qi Z, Liu C, Xue N (2019) Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett 11(1):1–14

    Article  Google Scholar 

  • Vaez TH, Hirata A (2011) Deposition of amorphous carbon films from C60 fullerene sublimated in electron beam excited plasma. Diam Relat Mater 20(7):1036–1041

    Article  Google Scholar 

  • Yuan Y, Grozea D, Lu ZH (2005) Fullerene-doped hole transport molecular films for organic light-emitting diodes. Appl Phys Lett 86(14):143509

    Article  Google Scholar 

  • Zhong GY, Zhang YQ, Cao XA (2009) Conjugated polymer films for piezoresistive stress sensing. IEEE Electr Device L 30(11):1137–1139

    Article  Google Scholar 

  • Zhong GY, Yan WQ, Li J, Tian YM (2019a) Determining Young’s modulus of MEH-PPV film by fitting the unloading curve. Microsyst Technol 25(4):1467–1474

    Article  Google Scholar 

  • Zhong W, Ding X, Li W, Shen C, Yadav A, Chen Y, Bao M, Jiang H, Wang D (2019b) Facile fabrication of conductive graphene/polyurethane foam composite and its application on flexible piezo-resistive sensors. Polymers-Basel 11(8):1289

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant 51373036 (Gaoyu Zhong) and the National Science Foundation for Young Scientists of China under Grant 61704107 (Yijie Xia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoyu Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Wu, L., Li, S. et al. The piezoresistive performances of the devices with fullerene-doped MEH-PPV films. Microsyst Technol 27, 2661–2670 (2021). https://doi.org/10.1007/s00542-020-05039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05039-6

Navigation