Skip to main content
Log in

Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This article presented a numerical method for discovering the free vibration of a spinning bi-dimensional functionally graded materials (FGM) micro circular plate exposed to thermal load based on Winkler–Pasternak foundation for the first time. Thermomechanical properties of bi-dimensional FGM micro plate are supposed to change during the thickness and radius directions of the plate. The small effect is taken into consideration the modified couple stress theory. Linear temperature rise during thickness and radius direction is investigated. First-order shear deformation theory is employed to derive the governing equations and boundary conditions of the bi-dimensional FGM circular plate in the thermal environment via Hamilton’s principle. The differential quadrature method is used to achieve the frequency of bi-dimensional FGM micro circular plate exposed to the thermal environment. A parametric analysis is led to assess the efficacy of Winkler and Pasternak parameters, FG power index, coefficients of bi-dimensional FGM, size dependency, non-dimensional angular velocity, temperature changes and thermal loading on the natural frequencies of bi-dimensional FGM micro plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alinaghizadeh F, Shariati M (2015) Static analysis of variable thickness two-directional functionally graded annular sector plates fully or partially resting on elastic foundations by the GDQ method. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-015-0427-0

    Google Scholar 

  • Alinaghizadeh F, Shariati M (2016) Geometrically non-linear bending analysis of thick two-directional functionally graded annular sector and rectangular plates with variable thickness resting on non-linear elastic foundation. Compos Part B Eng 86:61–83. doi:10.1016/j.compositesb.2015.05.010

    Article  Google Scholar 

  • Alipour MM, Shariyat M (2013) Semianalytical solution for buckling analysis of variable thickness two-directional functionally graded circular plates with nonuniform elastic foundations. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000522

    MATH  Google Scholar 

  • Anjomshoa A (2013) Application of Ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates based on nonlocal elasticity theory. Meccanica 48:1337–1353. doi:10.1007/s11012-012-9670-y

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Gholami R, Faghih Shojaei M, Mohammadi V, Sahmani S (2015) Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. Eur J Mech A Solids 49:251–267. doi:10.1016/j.euromechsol.2014.07.014

    Article  MathSciNet  Google Scholar 

  • Bauer HF, Eidel W (2007) Transverse vibration and stability of spinning circular plates of constant thickness and different boundary conditions. J Sound Vib 300:877–895. doi:10.1016/j.jsv.2006.09.001

    Article  Google Scholar 

  • Bedroud M, Hosseini-Hashemi S, Nazemnezhad R (2013) Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity. Acta Mech 224:2663–2676. doi:10.1007/s00707-013-0891-5

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34(2):235–238

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J comput phys 10(1):40–52

    Article  MathSciNet  MATH  Google Scholar 

  • Chaht FL, Kaci A, Sid M, Houari A, Tounsi A, Bég OA et al (2015) Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos Struct 2:425–442

    Article  Google Scholar 

  • Duan WH, Wang CM (2007) Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18:385704. doi:10.1088/0957-4484/18/38/385704

    Article  Google Scholar 

  • Eshraghi I, Dag S, Soltani N (2016) Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading. Compos Struct 137:196–207. doi:10.1016/j.compstruct.2015.11.024

    Article  Google Scholar 

  • Farajpour A, Shahidi AR, Mohammadi M, Mahzoon M (2012) Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos Struct 94:1605–1615. doi:10.1016/j.compstruct.2011.12.032

    Article  Google Scholar 

  • Ghadiri M, Shafiei N (2015) Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol. doi:10.1007/s00542-015-2662-9

    Google Scholar 

  • Ghadiri M, Shafiei N, Safarpour H (2016) Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol. doi:10.1007/s00542-016-2822-6

    Google Scholar 

  • Ghadiri M, Mahinzare M, Shafiei N, Ghorbani K (2017) On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments. Microsyst Technol. doi:10.1007/s00542-017-3308-x

    Google Scholar 

  • Gholami R, Ansari R, Darvizeh A, Sahmani S (2015) Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory. Int J Struct Stab Dyn 15:1450070. doi:10.1142/S0219455414500709

    Article  MathSciNet  MATH  Google Scholar 

  • Irie T, Yamada G, Aomura S (1980) Natural frequencies of Mindlin circular plates. J Appl Mech 47:652–655

    Article  MATH  Google Scholar 

  • Jabbari M, Joubaneh EF, Mojahedin A (2014) Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory. Int J Mech Sci 83:57–64

    Article  MATH  Google Scholar 

  • Jin TL, Ha NS, Goo NS (2014) A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis. Thin-Walled Struct 77:187–197. doi:10.1016/j.tws.2013.10.012

    Article  Google Scholar 

  • Kadkhodayan M, Golmakani ME (2014) Non-linear bending analysis of shear deformable functionally graded rotating disk. Int J Non Linear Mech 58:41–56. doi:10.1016/j.ijnonlinmec.2013.08.007

    Article  Google Scholar 

  • Ke LL, Yang J, Kitipornchai S, Bradford MA (2012) Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct 94:3250–3257. doi:10.1016/j.compstruct.2012.04.037

    Article  Google Scholar 

  • Leissa AW (1969) Vibration of plates. NASA SP-160. US Government Printing Office, Washington, DC

  • Liew KM, Han J-B, Xiao ZM (1997) Vibration analysis of circular Mindlin plates using the differential quadrature method. J Sound Vib 205:617–630

    Article  Google Scholar 

  • Ma LS, Wang TJ (2003) Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int J Solids Struct 40:3311–3330. doi:10.1016/S0020-7683(03)00118-5

    Article  MATH  Google Scholar 

  • Mahinzare M, Mohammadi K, Ghadiri M, Rajabpour A (2017) Size-dependent effects on critical flow velocity of a SWCNT conveying viscous fluid based on nonlocal strain gradient cylindrical shell model. Microfluid Nanofluid 21:123. doi:10.1007/s10404-017-1956-x

    Article  Google Scholar 

  • Mahinzare M, Ranjbarpur H, Ghadiri M (2018) Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate. Mech Syst Signal Process 100:188–207. doi:10.1016/j.ymssp.2017.07.041

    Article  Google Scholar 

  • Mehri M, Asadi H, Wang Q (2016) Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Comput Methods Appl Mech Eng 303:75–100. doi:10.1016/j.cma.2016.01.017

    Article  MathSciNet  Google Scholar 

  • Mohammadi K, Mahinzare M, Rajabpour A, Ghadiri M (2017a) Comparison of modeling a conical nanotube resting on the Winkler elastic foundation based on the modified couple stress theory and molecular dynamics simulation. Eur Phys J Plus 132:115. doi:10.1140/epjp/i2017-11395-x

    Article  Google Scholar 

  • Mohammadi K, Mahinzare M, Ghorbani K, Ghadiri M (2017b) Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory. Microsyst Technol. doi:10.1007/s00542-017-3476-8

    Google Scholar 

  • Özakça M, Tayşi N, Kolcu F (2003) Buckling analysis and shape optimization of elastic variable thickness circular and annular plates-I. Finite element formulation. Eng Struct 25:181–192. doi:10.1016/S0141-0296(02)00133-5

    Article  Google Scholar 

  • Quan JR, Chang CT (1989) New insights in solving distributed system equations by the quadrature method—I. Analysis. Comput Chem Eng 13(7):779–788

    Article  Google Scholar 

  • Reddy JN, Berry J (2012) Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress. Compos Struct 94:3664–3668. doi:10.1016/j.compstruct.2012.04.019

    Article  Google Scholar 

  • Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress 21:593–626

    Article  Google Scholar 

  • Salamat-Talab M, Nateghi A, Torabi J (2012) Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int J Mech Sci 57:63–73. doi:10.1016/j.ijmecsci.2012.02.004

    Article  Google Scholar 

  • Satouri S (2015) Natural frequency analysis of 2D-FGM sectorial plate with variable thickness resting on elastic foundation using 2D-DQM. Int J Appl Mech. doi:10.1142/S1758825115500301

    Google Scholar 

  • Shafiei N, Ghadiri M, Mahinzare M (2017) Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment. Mech Adv Mater Struct. doi:10.1080/15376494.2017.1365982

    Google Scholar 

  • Shariyat M, Alipour MM (2013) A power series solution for vibration and complex modal stress analyses of variable thickness viscoelastic two-directional FGM circular plates on elastic foundations. Appl Math Model 37:3063–3076. doi:10.1016/j.apm.2012.07.037

    Article  MathSciNet  MATH  Google Scholar 

  • Shariyat M, Jafari AA, Alipour MM (2013) Investigation of the thickness variability and material heterogeneity effects on free vibration of the viscoelastic circular plates. Acta Mech Solida Sin 26:83–98. doi:10.1016/S0894-9166(13)60009-9

    Article  Google Scholar 

  • Shojaeefard MH, Googarchin HS, Ghadiri M, Mahinzare M (2017) Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT. Appl Math Model. doi:10.1016/j.apm.2017.06.022

    MathSciNet  Google Scholar 

  • Shu C, Richards BE (1990) High resolution of natural convection in a square cavity by generalized differential quadrature. In: Proceedings of the 3rd international conference on advances in numeric methods in engineering: theory and application, Swansea, UK

  • Şimşek M (2009) Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. Int J Eng Appl Sci 1:1–11

    Google Scholar 

  • Şimşek M (2010) Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos Struct 92:904–917. doi:10.1016/j.compstruct.2009.09.030

    Article  Google Scholar 

  • Tornabene F, Fantuzzi N, Viola E, Carrera E (2014) Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Compos Struct 107:675–697. doi:10.1016/j.compstruct.2013.08.038

    Article  Google Scholar 

  • Tornabene F, Fantuzzi N, Bacciocchi M, Viola E (2015a) Static and dynamic analyses of doubly-curved composite thick shells with variable radii of curvatures 89:2015

    Google Scholar 

  • Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015b) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev 67:20801

    Article  Google Scholar 

  • Tornabene F, Fantuzzi N, Bacciocchi M (2016a) The local GDQ method for the natural frequencies of doubly-curved shells with variable thickness: a general formulation. Compos Part B Eng. doi:10.1016/j.compositesb.2016.02.010

    Google Scholar 

  • Tornabene F, Fantuzzi N, Ubertini F, Viola E (2016b) Strong formulation finite element method based on differential quadrature: a survey 67:1–55. doi:10.1115/1.4028859

    Google Scholar 

  • Van Dung D, Hoa LK (2013) Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure. Thin-Walled Struct 63:117–124. doi:10.1016/j.tws.2012.09.010

    Article  Google Scholar 

  • Viola E, Tornabene F, Fantuzzi N (2013) Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories. Compos Struct 101:59–93. doi:10.1016/j.compstruct.2013.01.002

    Article  Google Scholar 

  • Viola E, Rossetti L, Fantuzzi N, Tornabene F (2014) Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery. Compos Struct 112:44–65. doi:10.1016/j.compstruct.2014.01.039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahinzare.

Appendices

Appendix A

The strain energy of isotropic linear elastic parts is obtained using the following equation (Eshraghi et al. 2016; Reddy and Berry 2012; Ke et al. 2012):

$${\text{U = }}\frac{1}{2}\int\limits_{V} {(\sigma :\varepsilon + m:\chi )dV} ,$$
(32)

where ε and σ are the linear strain and the Cauchy stress tensors respectively. χ and m are the symmetric curvature strain and deviatoric part of the couple stress tensors. The four last tensors are defined as follows (Eshraghi et al. 2016; Reddy and Berry 2012; Ke et al. 2012):

$$\sigma = \lambda tr(\varepsilon )I + 2\mu \varepsilon ,$$
(33)
$$\varepsilon = \frac{1}{2}[\nabla u + (\nabla u)^{T} ],$$
(34)
$$m = 2l^{2} \mu \chi ,$$
(35)
$$\chi = \frac{1}{2}[\nabla \varLambda + (\nabla \varLambda )^{T} ],$$
(36)

where λ and μ are the Lame’s constant, u and l are the displacement vector and the material length scale parameter respectively, and Λ is a rotation vector defined by:

$$\varLambda = \frac{1}{2}curl\,u.$$
(37)

Appendix B

$$N_{rr} (r) = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\sigma_{rr} dz = \left( {A_{11} (r)\frac{\partial u}{\partial r} + A_{12} (r)\frac{u}{r}} \right) + \left( {B_{11} (r)\frac{\partial \varPhi }{\partial r} + B_{12} (r)\frac{\varPhi }{r}} \right),}$$
(38)
$$N_{\theta \theta } (r) = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\sigma_{\theta \theta } dz = \left( {A_{12} (r)\frac{\partial u}{\partial r} + A_{11} (r)\frac{u}{r}} \right) + \left( {B_{12} (r)\frac{\partial \varPhi }{\partial r} + B_{11} (r)\frac{\varPhi }{r}} \right)} ,$$
(39)
$$M_{rr} (r) = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\sigma_{rr} zdz = \left( {B_{11} (r)\frac{\partial u}{\partial r} + B_{12} (r)\frac{u}{r}} \right) + \left( {A_{11} (r)\frac{\partial \varPhi }{\partial r} + B_{12} (r)\frac{\varPhi }{r}} \right)} ,$$
(40)
$$M_{\theta \theta } (r) = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\sigma_{\theta \theta } zdz = \left( {B_{12} (r)\frac{\partial u}{\partial r} + B_{11} (r)\frac{u}{r}} \right) + \left( {D_{11} (r)\frac{\partial \varPhi }{\partial r} + D_{12} (r)\frac{\varPhi }{r}} \right)} ,$$
(41)
$$M_{rz} (r) = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\sigma_{rz} dz = k_{s} A_{55} } (r)\left( {\frac{\partial w}{\partial r} + \varPhi } \right),$$
(42)
$$\varOmega_{r\theta } = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {m_{r\theta } dz = \frac{1}{2}S(r,z)\left( {\left( {\frac{\partial \varPhi }{\partial r} - \frac{{\partial^{2} w}}{{\partial r^{2} }}} \right) - \frac{1}{r}\left( {\varPhi - \frac{\partial w}{\partial r}} \right)} \right)} ,$$
(43)

where \(k_{s} = \frac{{\pi^{2} }}{12}\) s known as the shear correction factor and the constants are defined as follows:

$$\{ A_{11} ,B_{11} ,D_{11} \} = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\left( {\frac{E(r,z)}{{1 - v^{2} (r,z)}}} \right)} \{ 1,z,z^{2} \} dz,$$
(44)
$$\{ A_{12} ,B_{12} ,D_{12} \} = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\left( {\frac{E(r,z)v(z)}{{1 - v^{2} (r,z)}}} \right)} \{ 1,z,z^{2} \} dz,$$
(45)
$$A_{55} = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\left( {\frac{E(r,z)}{2(1 + v(r,z))}} \right)} dz,$$
(46)
$$S = \int\limits_{{ - \frac{h(r)}{2}}}^{{\frac{h(r)}{2}}} {\left( {\frac{{l^{2} (r,z)E(r,z)}}{2(1 + v(r,z))}} \right)} dz.$$
(47)

Appendix C

$$\left[ \begin{array}{l} (A_{11} )\left( {\frac{{\partial^{2} u}}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial u}{\partial r} - \frac{u}{{r^{2} }}} \right) + \hfill \\ r\frac{{\partial A_{11} }}{\partial r}\frac{\partial u}{\partial r} + \frac{{\partial A_{12} }}{\partial r}u \hfill \\ + (B_{11} )\left( {\frac{{\partial^{2} \varPhi }}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial \varPhi }{\partial r} - \frac{\varPhi }{{r^{2} }}} \right) \hfill \\ \left( {r\frac{{\partial B_{11} }}{\partial r}\frac{\partial \varPhi }{\partial r} + \frac{{\partial B_{12} }}{\partial r}\varPhi } \right) \hfill \\ \end{array} \right] = \left( {I_{1} \frac{{\partial^{2} u}}{{\partial t^{2} }} + I_{2} \frac{{\partial^{2} \varPhi }}{{\partial t^{2} }}} \right),$$
(48)
$$\left[ \begin{array}{l} \frac{{k_{s} }}{r}\left( {A_{55} r\frac{{\partial^{2} w}}{{\partial r^{2} }} + A_{55} \frac{\partial w}{\partial r} + \frac{{\partial A_{55} }}{\partial r}r\frac{\partial w}{\partial r}} \right) \hfill \\ + \frac{S}{4r}\left( { - \frac{1}{2}\frac{{\partial^{4} w}}{{\partial r^{4} }} - \frac{1.5}{2r}\frac{{\partial^{3} w}}{{\partial r^{3} }} - \left( {\frac{1.5}{r} - \frac{1}{{r^{2} }}} \right)\frac{{\partial^{2} w}}{{\partial r^{2} }} - \left( {\frac{1}{{r^{3} }} - \frac{3}{{r^{2} }}} \right)\frac{\partial w}{\partial r}} \right) \hfill \\ - \left( {\frac{1}{2r}\frac{\partial S}{\partial r}} \right)\left( {\frac{{\partial^{3} w}}{{\partial r^{3} }} + \frac{1.5}{r}\frac{{\partial^{2} w}}{{\partial r^{2} }} + \left( {\frac{1.5}{r} - \frac{1}{{r^{2} }}} \right)\frac{\partial w}{\partial r}} \right) \hfill \\ - \left( {\frac{1}{2r}\frac{{\partial^{2} S}}{{\partial r^{2} }}} \right)\left( {\frac{1}{2}\frac{{\partial^{2} w}}{{\partial r^{2} }} + \frac{1.5}{r}\frac{\partial w}{\partial r}} \right) \hfill \\ + \frac{{k_{s} }}{r}\left( {A_{55} r\frac{\partial \varPhi }{\partial r} + A_{55} \varPhi + \frac{{\partial A_{55} }}{\partial r}r\varPhi } \right) \hfill \\ + \frac{S}{4r}\left( {\frac{1}{2}\frac{{\partial^{3} \varPhi }}{{\partial r^{3} }} + \frac{1.5}{2r}\frac{{\partial^{2} \varPhi }}{{\partial r^{2} }} + \left( {\frac{1.5}{r} - \frac{1}{{r^{2} }}} \right)\frac{\partial \varPhi }{\partial r} + \left( {\frac{1}{{r^{3} }} - \frac{3}{{r^{2} }}} \right)\varPhi } \right) \hfill \\ + \left( {\frac{1}{2r}\frac{\partial S}{\partial r}} \right)\left( {\frac{{\partial^{2} \varPhi }}{{\partial r^{2} }} + \left( {\frac{1}{r} + 1.5} \right)\frac{\partial \varPhi }{\partial r} + \left( {\frac{1.5}{r} - \frac{1}{{r^{2} }}} \right)\varPhi } \right) \hfill \\ + \left( {\frac{1}{2r}\frac{{\partial^{2} S}}{{\partial r^{2} }}} \right)\left( {\frac{1}{2}\frac{\partial \varPhi }{\partial r} + \frac{1.5}{r}\varPhi } \right) + \frac{\partial }{r\partial r}\left( {(N^{Rotation} + N^{Thermal} )r\frac{\partial w}{\partial r}} \right) \hfill \\ K_{Winkler} w - K_{Pasternak} \nabla^{2} w \hfill \\ \end{array} \right] = I_{1} \frac{{\partial^{2} w}}{{\partial t^{2} }},$$
(49)
$$\begin{aligned} \left[ \begin{aligned} - k_{s} A_{55} \frac{\partial w}{\partial r} + \left( { - \frac{S}{2}} \right)\left( {\frac{1}{4}\frac{{\partial^{3} w}}{{\partial r^{3} }} + \frac{1}{r}\frac{{\partial^{2} w}}{{\partial r^{2} }} + \frac{1}{{r^{2} }}\frac{\partial w}{\partial r}} \right) - \left( {\frac{1}{4}\frac{\partial S}{\partial r}} \right)\left( {\frac{{\partial^{2} w}}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial w}{\partial r}} \right) \hfill \\ - k_{s} A_{55} \varPhi + D_{11} \left( {\frac{{\partial^{2} \varPhi }}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial \varPhi }{\partial r} - \frac{1}{{r^{2} }}\varPhi } \right) + \left( {\frac{{\partial D_{11} }}{\partial r}} \right)\left( {\frac{\partial \varPhi }{\partial r}} \right) + \left( {\frac{{\partial D_{12} }}{\partial r}} \right)\left( {\frac{1}{r}\varPhi } \right) \hfill \\ \frac{1}{2}\left\{ {\left( {\frac{S}{4}} \right)\left( {\frac{{\partial^{2} \varPhi }}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial \varPhi }{\partial r} - \frac{1}{{r^{2} }}\varPhi } \right) + \left( {\frac{\partial S}{\partial r}} \right)\left( {\frac{\partial \varPhi }{\partial r}} \right) + \left( {\frac{\partial S}{\partial r}} \right)\left( {\frac{1}{r}\varPhi } \right)} \right\} \hfill \\ \frac{1}{r}\left\{ {(B_{11} )\left( {r\frac{{\partial^{2} u}}{{\partial r^{2} }} + \frac{\partial u}{\partial r} - \frac{1}{r}u} \right) + \left( {\frac{{\partial B_{11} }}{\partial r}} \right)\left( {r\frac{\partial u}{\partial r}} \right) + \left( {\frac{{\partial B_{12} }}{\partial r}} \right)(u)} \right\} \hfill \\ \end{aligned} \right] = I_{2} \frac{{\partial^{2} u}}{{\partial t^{2} }} + I_{3} \frac{{\partial^{2} \varPhi }}{{\partial t^{2} }}, \hfill \\ \end{aligned}$$
(50)
$$\left[ {\left( {A_{11} \left( {r\frac{\partial u}{\partial r}} \right) + A_{12} u} \right) + \left( {B_{11} \left( {r\frac{\partial \varPhi }{\partial r}} \right) + B_{12} \varPhi } \right)} \right]\delta \,u = 0\quad {\text{at}}\,{\text{r}} = 0,{\text{R,}}$$
(51)
$$\left[ \begin{array}{l} \frac{S}{4}\left( {\frac{{\partial^{2} \varPhi }}{{\partial r^{2} }} - \frac{{\partial^{3} w}}{{\partial r^{3} }} + \frac{1}{r}\frac{\partial \varPhi }{\partial r} - \frac{1}{r}\frac{{\partial^{2} w}}{{\partial r^{2} }} - \frac{\varPhi }{{r^{2} }} + \frac{1}{{r^{2} }}\frac{\partial w}{\partial r}} \right) \hfill \\ + k_{s} A_{55} \left( {\frac{\partial w}{\partial r} + \varPhi } \right) \hfill \\ + \frac{1}{4}\frac{\partial S}{\partial r}\left( {\frac{\partial \varPhi }{\partial r} - \frac{{\partial^{2} w}}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial \varPhi }{\partial r}} \right) + \frac{1}{r}\left( { - \frac{\partial w}{\partial r} + \varPhi } \right) \hfill \\ \end{array} \right]\delta w = 0\quad {\text{at}}\,{\text{r}} = 0,{\text{R,}}$$
(52)
$$\left( {\frac{S}{4}\frac{1}{r}\left( {\left( {\frac{\partial \varPhi }{\partial r} - \frac{{\partial^{2} w}}{{\partial r^{2} }}} \right) - \frac{1}{r}\left( {\varPhi - \frac{\partial w}{\partial r}} \right)} \right)} \right)\delta \left( {\frac{\partial w}{\partial r}} \right) = 0\quad {\text{at}}\,{\text{r}} = 0,{\text{R,}}$$
(53)
$$\left( {B_{11} \frac{\partial u}{\partial r} + B_{12} \frac{u}{r} + D_{11} \frac{{\partial {{\Phi }}}}{\partial r} + D_{12} \frac{{{\Phi }}}{r} + \frac{S}{4}\left( {\left( {\frac{{\partial {{\Phi }}}}{\partial r} - \frac{{\partial^{2} w}}{{\partial r^{2} }}} \right) - \frac{1}{r}\left( {{{\Phi }} - \frac{\partial w}{\partial r}} \right)} \right)} \right)\delta {{\Phi }} = 0\quad {\text{at}}\,{\text{r}} = 0,{\text{R}} .$$
(54)

Appendix D

$$\left[ \begin{aligned} (A_{11} )\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} u_{k} + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} u_{k} - \frac{{u_{i} }}{{r_{i}^{2} }}} } } \right) + \hfill \\ \left( {r_{i} \left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} } A_{11} } \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} u_{k} } } \right) + \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} A_{12} } } \right)(u_{i} )} \right. \hfill \\ + (B_{11} )\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} \varPhi_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{\left( 1 \right)} \varPhi_{k} - \frac{{\varPhi_{i} }}{{r_{i}^{2} }}} } \right) + \hfill \\ \left( {r_{i} \left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} } B_{11} } \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} } } \right) + \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} B_{12} } } \right)(\varPhi_{i} )} \right. \hfill \\ \end{aligned} \right] = \omega^{2} (I_{1} u_{i} + I_{2} \varPhi_{i} ),$$
(55)
$$\left[ \begin{aligned} \left( {\frac{S}{{4r_{i} }}} \right)\left[ \begin{aligned} \frac{1}{2}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(3)} \varPhi_{k} + \frac{1.5}{{2r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} \varPhi_{k} (\frac{1.5}{{r_{i} }} - \frac{1}{{r_{i}^{2} }})\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} } } } \hfill \\ + \left( {\frac{1}{{r^{3}_{i} }} - \frac{3}{{r_{i}^{2} }}} \right)\varPhi_{i} - \frac{1}{2}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{\left( 4 \right)} w_{k} } - \frac{1.5}{{2r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(3)} w_{k} } \hfill \\ \left( {\frac{1.5}{{r_{i} }} - \frac{1}{{r_{i}^{2} }}} \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} - } \left( {\frac{1}{{r^{3}_{i} }} - \frac{3}{{r_{i}^{2} }}} \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } \hfill \\ \end{aligned} \right] \hfill \\ + (k_{s} A_{55} )\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} + \sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} + \frac{{\varPhi_{i} }}{{r_{i} }}} } } \right) \hfill \\ \left( {\frac{{k_{s} }}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} A_{55} } )(r_{i} \sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} + r_{i} \varPhi_{i} } } \right) - \hfill \\ (\frac{1}{{2r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} S} \left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(3)} w_{k} } + (\frac{1.5}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} } + \left( {\frac{1.5}{{r_{i} }} - \frac{1}{{r_{i}^{2} }}} \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } \right) + \hfill \\ \left( {\left( {\frac{1}{{2r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} S} } \right)\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} \varPhi_{k} } + \left( {\frac{1}{{r_{i} }} + 1.5} \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} } + \left( {\frac{1.5}{{r_{i} }} - \frac{1}{{r_{i}^{2} }}} \right)\varPhi_{i} } \right)} \right) - \hfill \\ \left( {\left( {\frac{1}{{2r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} S} } \right)\left( {\left( {\frac{1}{2}} \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} } + \frac{1.5}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } \right)} \right) + \hfill \\ \left( {\left( {\left( {\frac{1}{{2r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} S} } \right)\left( {\left( {\frac{1}{2}} \right)\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} } + \left( {\frac{1.5}{{r_{i} }}} \right)\varPhi_{i} } \right)} \right)} \right) + \hfill \\ \frac{1}{{r_{i} }}\left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} ((N^{Rotation} + N^{Thermal} )r\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } \right)} } \right)} \right) \hfill \\ (K_{Winkler} w_{i} ) - \left( {K_{Pasternak} \sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } } \right) \hfill \\ \end{aligned} \right] = \omega^{2} I_{1} w_{i} ,$$
(56)
$$\left[ \begin{aligned} - k_{s} A_{55} \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } \right) - \varPhi_{i} } \right) \hfill \\ \left( { - \frac{S}{2}} \right)\left( {\frac{1}{4}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(3)} w_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} + \frac{1}{{r_{i}^{2} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } } \right) \hfill \\ - \left( {\left( {\frac{1}{4}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} S} } \right)\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} w_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} w_{k} } } \right)} \right) \hfill \\ + \left( {\frac{S}{4}(\frac{1}{2})} \right)\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} \varPhi_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} - \frac{{\varPhi_{i} }}{{r_{i}^{2} }}} } \right) \hfill \\ + \left( {\left( {\frac{1}{2}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} S} } \right)\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} } + \frac{{\varPhi_{i} }}{{r_{i} }}} \right)} \right) \hfill \\ + (D_{11} )\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{\left( 2 \right)} \varPhi_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} - \frac{{\varPhi_{i} }}{{r_{i}^{2} }}} } \right) \hfill \\ + \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} D_{11} } \left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} \varPhi_{k} } } \right)} \right)} \right. + \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} D_{12} } } \right)(\varPhi_{i} )} \right) \hfill \\ + (B_{11} )\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(2)} u_{k} } + \frac{1}{{r_{i} }}\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} u_{k} - \frac{{u_{i} }}{{r_{i}^{2} }}} } \right) \hfill \\ + \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} B_{11} } \left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} u_{k} } } \right)} \right)} \right. + \left( {\left( {\sum\limits_{k = 1}^{{n_{i} }} {C_{ik}^{(1)} B_{12} } (u_{i} )} \right)} \right. \hfill \\ \end{aligned} \right] = \omega^{2} (I_{3} \varPhi_{i} + I_{2} u_{i} ).$$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahinzare, M., Barooti, M.M. & Ghadiri, M. Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsyst Technol 24, 1695–1711 (2018). https://doi.org/10.1007/s00542-017-3544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3544-0

Navigation