Skip to main content
Log in

Size-dependent effects on critical flow velocity of a SWCNT conveying viscous fluid based on nonlocal strain gradient cylindrical shell model

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This article investigates vibration and instability analysis of a single-walled carbon nanotube (SWCNT) conveying viscous fluid flow. For this purpose, the first-order shear deformation shell model is developed in the framework of nonlocal strain gradient theory (NSGT) for the first time. The proposed model is a conveying viscous fluid in which the external force of fluid flow is applied by the modified Navier–Stokes relation and considering slip boundary condition and Knudsen number. The NSGT can be reduced to the nonlocal elasticity theory, strain gradient theory or the classical elasticity theory by inserting their specific nonlocal parameters and material length scale parameters into the governing equations. Comparison of above-mentioned theories suggests that the NSGT predicts the greatest critical fluid flow velocity and stability region. The governing equations of motion and corresponding boundary conditions are discretized using the generalized differential quadrature method. Furthermore, the effects of the material length scale, nonlocal parameter, Winkler elastic foundation and Pasternak elastic foundation on vibration behavior and instability of a SWCNT conveying viscous fluid flow with simply supported and clamped–clamped boundary conditions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299

    Article  MATH  Google Scholar 

  • Alibeigloo A, Shaban M (2013) Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity. Acta Mech 224:1415–1427. doi:10.1007/s00707-013-0817-2

    Article  MathSciNet  MATH  Google Scholar 

  • Arani AG, Amir S, Dashti P, Yousefi M (2014) Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect. Comput Mater Sci 86:144–154

    Article  Google Scholar 

  • Bahaadini R, Hosseini M (2016) Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comput Mater Sci 114:151–159

    Article  Google Scholar 

  • Barooti MM, Safarpour H, Ghadiri M (2017) Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur Phys J Plus 132:6

    Article  Google Scholar 

  • Bauer S, Pittrof A, Tsuchiya H, Schmuki P (2011) Size-effects in TiO2 nanotubes: diameter dependent anatase/rutile stabilization. Electrochem Commun 13:538–541

    Article  Google Scholar 

  • Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34:235–238

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52

    Article  MathSciNet  MATH  Google Scholar 

  • Chowdhury R, Adhikari S, Wang CY, Scarpa F (2010) A molecular mechanics approach for the vibration of single-walled carbon nanotubes. Comput Mater Sci 48:730–735

    Article  Google Scholar 

  • Dirote EV (2004) Trends in nanotechnology research. Nova Publishers, Hauppauge

    Google Scholar 

  • Ebrahimi F, Barati MR (2016) Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory. J Therm Stress 39:1560–1571. doi:10.1080/01495739.2016.1219243

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2017) Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos Struct 159:433–444

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Fereidoon A, Andalib E, Mirafzal A (2016) Nonlinear vibration of viscoelastic embedded-DWCNTs integrated with piezoelectric layers-conveying viscous fluid considering surface effects. Phys E Low Dimens Syst Nanostructures 81:205–218

    Article  Google Scholar 

  • Firouz-Abadi RD, Amini H, Hosseinian AR (2012) Assessment of the resonance frequency of cantilever carbon nanocones using molecular dynamics simulation. Appl Phys Lett 100:173108

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:296–361

    MATH  Google Scholar 

  • Ghadiri M, Safarpour H (2016) Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl Phys A 122:833

    Article  Google Scholar 

  • Ghadiri M, SafarPour H (2017) Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J Therm Stress 40:55–71

    Article  Google Scholar 

  • Ghadiri M, Shafiei N (2015) Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol. doi:10.1007/s00542-015-2662-9

    Google Scholar 

  • Ghadiri M, Shafiei N (2016) Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method. J Vib Control. doi:10.1177/1077546315627723

    Google Scholar 

  • Ghadiri M, Mahinzare M, Shafiei N, Ghorbani K (2017) On size-dependent thermal buckling and free vibration of circular FG microplates in thermal environments. Microsyst Technol. doi:10.1007/s00542-017-3308-x

    Google Scholar 

  • Gholami R, Darvizeh A, Ansari R, Hosseinzadeh M (2014) Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49:1679–1695. doi:10.1007/s11012-014-9944-7

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y-G, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485

    Article  MATH  Google Scholar 

  • Hu K, Wang YK, Dai HL, Wang L, Qian Q (2016) Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int J Eng Sci 105:93–107

    Article  MathSciNet  Google Scholar 

  • Jannesari H, Emami MD, Karimpour H (2012) Investigating the effect of viscosity and nonlocal effects on the stability of SWCNT conveying flowing fluid using nonlinear shell model. Phys Lett A 376:1137–1145

    Article  Google Scholar 

  • Khosravian N, Rafii-Tabar H (2008) Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Nanotechnology 19:275703

    Article  Google Scholar 

  • Kiani K (2010) A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int J Mech Sci 52:1343–1356. doi:10.1016/j.ijmecsci.2010.06.010

    Article  MathSciNet  Google Scholar 

  • Kiani K (2013) Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model. Appl Math Model 37:1836–1850. doi:10.1016/j.apm.2012.04.027

    Article  MathSciNet  MATH  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Li L, Hu Y (2015) Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci 97:84–94

    Article  MathSciNet  Google Scholar 

  • Li L, Hu Y (2016a) Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput Mater Sci 112:282–288

    Article  Google Scholar 

  • Li L, Hu Y (2016b) Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int J Mech Sci. doi:10.1016/j.ijmecsci.2016.11.025

    Google Scholar 

  • Li L, Hu Y, Li X (2016a) Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Mech Sci 115:135–144

    Article  Google Scholar 

  • Li L, Hu Y, Li X, Ling L (2016b) Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory. Microfluid Nanofluidics 20:1–12

    Article  Google Scholar 

  • Li L, Li X, Hu Y (2016c) Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci 102:77–92

    Article  Google Scholar 

  • Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 165:250–265

    Article  Google Scholar 

  • Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  MATH  Google Scholar 

  • Manevitch L, Smirnov V, Strozzi M, Pellicano F (2016) Nonlinear optical vibrations of single-walled carbon nanotubes. Int J Non Linear Mech. doi:10.1016/j.ijnonlinmec.2016.10.010

    MATH  Google Scholar 

  • Maraghi ZK, Arani AG, Kolahchi R, Amir S, Bagheri MR (2013) Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos B Eng 45:423–432

    Article  Google Scholar 

  • Miandoab EM, Pishkenari HN, Yousefi-Koma A, Hoorzad H (2014) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys E Low Dimens Syst Nanostructures 63:223–228. doi:10.1016/j.physe.2014.05.025

    Article  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Mohammadi K, Mahinzare M, Rajabpour A, Ghadiri M (2017) Comparison of modeling a conical nanotube resting on the Winkler elastic foundation based on the modified couple stress theory and molecular dynamics simulation. Eur Phys J Plus 132:115. doi:10.1140/epjp/i2017-11395-x

    Article  Google Scholar 

  • Niknam H, Aghdam MM (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452–462

    Article  Google Scholar 

  • Rabani Bidgoli M, Saeed Karimi M, Ghorbanpour Arani A (2016) Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium. Mech Adv Mater Struct 23:819–831

    Article  Google Scholar 

  • SafarPour H, Ghadiri M (2017) Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid Nanofluidics 21:22

    Article  Google Scholar 

  • Salehipour H, Shahidi AR, Nahvi H (2015) Modified nonlocal elasticity theory for functionally graded materials. Int J Eng Sci 90:44–57

    Article  MathSciNet  Google Scholar 

  • Setoodeh AR, Afrahim S (2014) Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos Struct 116:128–135

    Article  Google Scholar 

  • Shafiei N, Ghadiri M, Makvandi H, Hosseini SA (2017) Vibration analysis of Nano-Rotor’s Blade applying Eringen nonlocal elasticity and generalized differential quadrature method. Appl Math Model 43:191–206

    Article  MathSciNet  Google Scholar 

  • Shu C (2012) Differential quadrature and its application in engineering. Springer, Berlin

    Google Scholar 

  • Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations. Int J Numer Methods Fluids 15:791–798

    Article  MATH  Google Scholar 

  • Strozzi M, Smirnov VV, Manevitch LI, Milani M, Pellicano F (2016) Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Circumferential flexural modes. J Sound Vib 381:156–178. doi:10.1016/j.jsv.2016.06.013

    Article  MATH  Google Scholar 

  • Tadi Beni Y, Mehralian F, Zeighampour H (2016) The modified couple stress functionally graded cylindrical thin shell formulation. Mech Adv Mater Struct 23:791–801

    Article  MATH  Google Scholar 

  • Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int J Eng Sci 84:1–10

    Article  MathSciNet  Google Scholar 

  • Tornabene F, Fantuzzi N, Bacciocchi M (2014) The strong formulation finite element method: stability and accuracy. Frat Ed Integrità Strutt 29:251

    Google Scholar 

  • Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev 67:20801

    Article  Google Scholar 

  • Wang L, Ni Q, Li M (2008) Buckling instability of double-wall carbon nanotubes conveying fluid. Comput Mater Sci 44:821–825

    Article  Google Scholar 

  • Xiao S, Hou W (2006) Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions. Fuller Nanotub Carbon Nonstructures 14:9–16

    Article  Google Scholar 

  • Yoon J, Ru CQ, Mioduchowski A (2005) Vibration and instability of carbon nanotubes conveying fluid. Compos Sci Technol 65:1326–1336

    Article  Google Scholar 

  • Zeighampour H, Beni YT (2014a) Cylindrical thin-shell model based on modified strain gradient theory. Int J Eng Sci 78:27–47

    Article  MathSciNet  Google Scholar 

  • Zeighampour H, Beni YT (2014b) Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Phys E Low Dimens Syst Nanostructures 61:28–39

    Article  Google Scholar 

  • Zhang YY, Wang CM, Challamel N (2009) Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J Eng Mech 136:562–574

    Article  Google Scholar 

  • Zhang Z, Liu Y, Li B (2014) Free vibration analysis of fluid-conveying carbon nanotube via wave method. Acta Mech Solida Sin 27:626–634

    Article  Google Scholar 

  • Zienert A, Schuster J, Streiter R, Gessner T (2010) Transport in carbon nanotubes: contact models and size effects. Phys Status Solidi 247:3002–3005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Appendix

Appendix

$$\begin{aligned} \delta u: \, A_{11} \left( {\frac{{\partial^{2} u}}{{\partial x^{2} }} + l^{2} \frac{{\partial^{4} u}}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} u}}{{\partial x^{2} \partial \theta^{2} }}} \right) + B_{11} \left( {\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} + l^{2} \frac{{\partial^{4} \psi_{x} }}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{x} }}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ + A_{12} \left( {\frac{1}{R}\frac{{\partial^{2} v}}{\partial x\partial \theta } + \frac{1}{R}\frac{\partial w}{\partial x} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} w}}{{\partial x^{3} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} v}}{{\partial x\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}} \right) \hfill \\ + B_{12} \left( {\frac{1}{R}\frac{{\partial^{2} \psi_{\theta } }}{\partial x\partial \theta } - \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ + \frac{{A_{66} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} u}}{{\partial \theta^{2} }} + \frac{{\partial^{2} v}}{\partial x\partial \theta } - \frac{{l^{2} }}{R}\frac{{\partial^{4} u}}{{\partial x^{2} \partial \theta^{2} }} - l^{2} \frac{{\partial^{4} v}}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} u}}{{\partial \theta^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ + \frac{{B_{66} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} \psi_{x} }}{{\partial \theta^{2} }} + \frac{{\partial^{2} \psi_{\theta } }}{\partial x\partial \theta } - \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{x} }}{{\partial x^{2} \partial \theta^{2} }} - l^{2} \frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{x} }}{{\partial \theta^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ = (1 - \mu^{2} \nabla^{2} )\left( {I_{0} \frac{{\partial^{2} u}}{{\partial t^{2} }} + I_{1} \frac{{\partial^{2} \psi_{x} }}{{\partial t^{2} }}} \right) \hfill \\ \end{aligned}$$
(30)
$$\begin{aligned} \delta v: \, \frac{{A_{12} }}{R}\left( {\frac{{\partial^{2} u}}{\partial x\partial \theta } + l^{2} \frac{{\partial^{4} u}}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} u}}{{\partial x\partial \theta^{3} }}} \right) + \frac{{B_{12} }}{R}\left( {\frac{{\partial^{2} \psi_{x} }}{\partial x\partial \theta } + l^{2} \frac{{\partial^{4} \psi_{x} }}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{x} }}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ + \frac{{A_{22} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} v}}{{\partial \theta^{2} }} + \frac{1}{R}\frac{\partial w}{\partial \theta } - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x^{2} \partial \theta^{2} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} v}}{{\partial \theta^{4} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial \theta^{3} }}} \right) \hfill \\ + \frac{{B_{22} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} \psi_{\theta } }}{{\partial \theta^{2} }} + \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{2} \partial \theta^{2} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial \theta^{4} }}} \right) \hfill \\ + A_{66} \left( {\frac{1}{R}\frac{{\partial^{2} u}}{\partial x\partial \theta } + \frac{{\partial^{2} v}}{{\partial x^{2} }} - \frac{{l^{2} }}{R}\frac{{\partial^{4} u}}{{\partial x^{3} \partial \theta }} - l^{2} \frac{{\partial^{4} v}}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} u}}{{\partial x\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ + B_{66} \left( {\frac{1}{R}\frac{{\partial^{2} \psi_{x} }}{\partial x\partial \theta } + \frac{{\partial^{2} \psi_{\theta } }}{{\partial x^{2} }} - \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{x} }}{{\partial x^{3} \partial \theta }} - l^{2} \frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{x} }}{{\partial x\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ + \frac{{K_{\text{s}} A_{44} }}{R}\left( {\psi_{\theta } + \frac{1}{R}\frac{\partial w}{\partial \theta } - \frac{v}{R} - l^{2} \frac{{\partial^{2} \psi_{\theta } }}{{\partial x^{2} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{2} v}}{{\partial x^{2} }}} \right. \hfill \\ \left. { - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{2} \psi_{\theta } }}{{\partial \theta^{2} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial \theta^{3} }} + \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{2} v}}{{\partial \theta^{2} }}} \right) = \left( {1 - \mu^{2} \nabla^{2} } \right)I_{0} \frac{{\partial^{2} v}}{{\partial t^{2} }} + I_{1} \frac{{\partial^{2} \psi_{\theta } }}{{\partial t^{2} }} \hfill \\ \end{aligned}$$
(31)
$$\begin{aligned} \delta w: \, \frac{{A_{12} }}{R}\left( {\frac{\partial u}{\partial x} + l^{2} \frac{{\partial^{3} u}}{{\partial x^{3} }} + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} u}}{{\partial x\partial \theta^{2} }}} \right) + \frac{{B_{12} }}{R}\left( {\frac{{\partial \psi_{x} }}{\partial x} + l^{2} \frac{{\partial^{3} \psi_{x} }}{{\partial x^{3} }} + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} \psi_{x} }}{{\partial x\partial \theta^{2} }}} \right) \hfill \\ + \frac{{A_{22} }}{R}\left( { - \frac{1}{R}\frac{\partial v}{\partial \theta } - \frac{w}{R} + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} v}}{{\partial x^{2} \partial \theta }} + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} v}}{{\partial \theta^{3} }} + \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }}} \right) \hfill \\ + \frac{{B_{22} }}{R}\left( { - \frac{1}{R}\frac{{\partial \psi_{\theta } }}{\partial \theta } + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} \psi_{\theta } }}{{\partial x^{2} \partial \theta }} + \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} \psi_{\theta } }}{{\partial \theta^{3} }}} \right) \hfill \\ + K_{\text{s}} A_{55} \left( {\frac{{\partial \psi_{x} }}{\partial x} - \frac{{\partial^{2} w}}{{\partial x^{2} }} - l^{2} \frac{{\partial^{3} \psi_{x} }}{{\partial x^{3} }} - l^{2} \frac{{\partial^{4} w}}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} \psi_{x} }}{{\partial x\partial \theta^{2} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} w}}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ + \frac{{K_{\text{s}} A_{44} }}{R}\left( {\frac{{\partial \psi_{\theta } }}{\partial \theta } - \frac{1}{R}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} - \frac{1}{R}\frac{\partial v}{\partial \theta } - l^{2} \frac{{\partial^{3} \psi_{\theta } }}{{\partial x^{2} \partial \theta }} - \frac{{l^{2} }}{R}\frac{{\partial^{4} w}}{{\partial x^{2} \partial \theta^{2} }}} \right. \hfill \\ \left. { + \frac{{l^{2} }}{R}\frac{{\partial^{3} v}}{{\partial x^{2} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} \psi_{\theta } }}{{\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} w}}{{\partial \theta^{4} }} + \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} v}}{{\partial \theta^{3} }}} \right) - \rho_{\text{b}} h_{\text{f}} \left( {v_{x}^{2} \frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) \hfill \\ + \frac{{\mu_{\text{f}} h_{\text{f}} }}{{R^{2} }}\left( {v_{x} \frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}} \right) - \frac{{2\mu_{\text{f}} h_{\text{f}} }}{{R^{2} }}\left( {v_{x} \frac{\partial w}{\partial x}} \right) + \mu_{\text{f}} h_{\text{f}} \left( {v_{x} \frac{{\partial^{3} w}}{{\partial x^{3} }}} \right) \hfill \\ + k_{\text{w}} w + k_{\text{p}} \frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{k_{\text{p}} }}{{R^{2} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} = \left( {1 - \mu^{2} \nabla^{2} } \right)I_{0} \frac{{\partial^{2} w}}{{\partial t^{2} }} + \rho_{\text{b}} h_{\text{f}} \left( {\frac{{\partial^{2} w}}{{\partial t^{2} }} + 2v_{x} \frac{{\partial^{2} w}}{\partial x\partial t}} \right) \hfill \\ - \frac{{\mu_{\text{f}} h_{\text{f}} }}{{R^{2} }}\left( {\frac{{\partial^{3} w}}{{\partial t\partial \theta^{2} }}} \right) + \frac{{2\mu_{\text{f}} h_{\text{f}} }}{{R^{2} }}\left( {\frac{\partial w}{\partial t}} \right) - \mu_{\text{f}} h_{\text{f}} \left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial t}}} \right) \hfill \\ \end{aligned}$$
(32)
$$\begin{aligned} \delta \psi_{x} : \, B_{11} \left( {\frac{{\partial^{2} u}}{{\partial x^{2} }} - l^{2} \frac{{\partial^{4} u}}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} u}}{{\partial x^{2} \partial \theta^{2} }}} \right) + D_{11} \left( {\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} - l^{2} \frac{{\partial^{4} \psi_{x} }}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{x} }}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ + B_{12} \left( {\frac{1}{R}\frac{{\partial^{2} v}}{\partial x\partial \theta } + \frac{1}{R}\frac{\partial w}{\partial x} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} w}}{{\partial x^{3} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} v}}{{\partial x\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}} \right) \hfill \\ + D_{12} \left( {\frac{1}{R}\frac{{\partial^{2} \psi_{\theta } }}{\partial x\partial \theta } + \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ + \frac{{B_{66} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} u}}{{\partial \theta^{2} }} + \frac{{\partial^{2} v}}{\partial x\partial \theta } - \frac{{l^{2} }}{R}\frac{{\partial^{4} u}}{{\partial x^{2} \partial \theta^{2} }} - l^{2} \frac{{\partial^{4} v}}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} u}}{{\partial \theta^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ + \frac{{D_{66} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} \psi_{x} }}{{\partial \theta^{2} }} + \frac{{\partial^{2} \psi_{\theta } }}{\partial x\partial \theta } - \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{x} }}{{\partial x^{2} \partial \theta^{2} }} - l^{2} \frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{x} }}{{\partial \theta^{4} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ - K_{\text{s}} A_{55} \left( {\psi_{x} + \frac{\partial w}{\partial x} - l^{2} \frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} - l^{2} \frac{{\partial^{3} w}}{{\partial x^{3} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{2} \psi_{x} }}{{\partial \theta^{2} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}} \right) \hfill \\ = (1 - \mu^{2} \nabla^{2} )\left( {I_{1} \frac{{\partial^{2} u}}{{\partial t^{2} }} + I_{2} \frac{{\partial^{2} \psi_{x} }}{{\partial t^{2} }}} \right) \hfill \\ \end{aligned}$$
(33)
$$\begin{aligned} \delta \psi_{\theta } : \, \frac{{B_{12} }}{R}\left( {\frac{{\partial^{2} u}}{\partial x\partial \theta } - l^{2} \frac{{\partial^{4} u}}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} u}}{{\partial x\partial \theta^{3} }}} \right) + \frac{{D_{12} }}{R}\left( {\frac{{\partial^{2} \psi_{x} }}{\partial x\partial \theta } - l^{2} \frac{{\partial^{4} \psi_{x} }}{{\partial x^{3} \partial \theta }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{x} }}{{\partial x\partial \theta^{3} }}} \right) \hfill \\ + \frac{{B_{22} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} v}}{{\partial \theta^{2} }} - \frac{1}{R}\frac{\partial w}{\partial \theta } - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x^{2} \partial \theta^{2} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} v}}{{\partial \theta^{4} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial \theta^{3} }}} \right) \hfill \\ + \frac{{D_{22} }}{R}\left( {\frac{1}{R}\frac{{\partial^{2} \psi_{\theta } }}{{\partial \theta^{2} }} - \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{2} \partial \theta^{2} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial \theta^{4} }}} \right) \hfill \\ + B_{66} \left( {\frac{1}{R}\frac{{\partial^{2} u}}{\partial x\partial \theta } - \frac{{\partial^{2} v}}{{\partial x^{2} }} - \frac{{l^{2} }}{R}\frac{{\partial^{4} u}}{{\partial x^{3} \partial \theta }} - l^{2} \frac{{\partial^{4} v}}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} u}}{{\partial x\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} v}}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ + D_{66} \left( {\frac{1}{R}\frac{{\partial^{2} \psi_{x} }}{\partial x\partial \theta } - \frac{{\partial^{2} \psi_{\theta } }}{{\partial x^{2} }} - \frac{{l^{2} }}{R}\frac{{\partial^{4} \psi_{x} }}{{\partial x^{3} \partial \theta }} - l^{2} \frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{4} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{4} \psi_{x} }}{{\partial x\partial \theta^{3} }} - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{4} \psi_{\theta } }}{{\partial x^{2} \partial \theta^{2} }}} \right) \hfill \\ - K_{\text{s}} A_{44} \left( {\psi_{\theta } + \frac{1}{R}\frac{\partial w}{\partial \theta } - \frac{v}{R} - l^{2} \frac{{\partial^{2} \psi_{\theta } }}{{\partial x^{2} }} - \frac{{l^{2} }}{R}\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} + \frac{{l^{2} }}{R}\frac{{\partial^{2} v}}{{\partial x^{2} }}} \right. \hfill \\ \left. { - \frac{{l^{2} }}{{R^{2} }}\frac{{\partial^{2} \psi_{\theta } }}{{\partial \theta^{2} }} - \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial \theta^{3} }} + \frac{{l^{2} }}{{R^{3} }}\frac{{\partial^{2} v}}{{\partial \theta^{2} }}} \right) = \left( {1 - \mu^{2} \nabla^{2} } \right)I_{1} \frac{{\partial^{2} v}}{{\partial t^{2} }} + I_{2} \frac{{\partial^{2} \psi_{\theta } }}{{\partial t^{2} }} \hfill \\ \end{aligned}$$
(34)

The above parameters in Eqs. (30)–(34) are defined as:

$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {A_{11} } & {A_{12} } & {A_{22} } & {A_{66} } & {A_{44} } & {A_{55} } \\ \end{array} } \right\} = \int\limits_{ - h/2}^{h/2} {\left\{ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{22} } & {C_{66} } & {C_{44} } & {C_{55} } \\ \end{array} } \right\}} {\text{d}}z \hfill \\ \left\{ {\begin{array}{*{20}c} {B_{11} } & {B_{12} } & {B_{22} } & {B_{66} } \\ \end{array} } \right\} = \int\limits_{ - h/2}^{h/2} {\left\{ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{22} } & {C_{66} } \\ \end{array} } \right\}} \, z{\text{d}}z \hfill \\ \left\{ {\begin{array}{*{20}c} {D_{11} } & {D_{12} } & {D_{22} } & {D_{66} } \\ \end{array} } \right\} = \int\limits_{ - h/2}^{h/2} {\left\{ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{22} } & {C_{66} } \\ \end{array} } \right\} \, } z^{2} {\text{d}}z \hfill \\ \left\{ {\begin{array}{*{20}c} {I_{0} } & {I_{1} } & {I_{2} } \\ \end{array} } \right\} = \int\limits_{ - h/2}^{h/2} {\rho (z,T)\left\{ {\begin{array}{*{20}c} 1 & z & {z^{2} } \\ \end{array} } \right\}} \, z{\text{d}}z \hfill \\ \end{aligned}$$
(35)

And then, the boundary conditions can be explained as follows

$$\begin{aligned} C - C \hfill \\ \delta u\left| {_{x = 0,L} } \right. = 0 \hfill \\ \delta v\left| {_{x = 0,L} } \right. = 0 \hfill \\ \delta w\left| {_{x = 0,L} } \right. = 0 \hfill \\ \delta \psi_{x} \left| {_{x = 0,L} } \right. = 0 \hfill \\ \delta \psi_{\theta } \left| {_{x = 0,L} } \right. = 0 \hfill \\ S - S \hfill \\ \delta v\left| {_{x = 0,L} } \right. = 0 \hfill \\ \delta w\left| {_{x = 0,L} } \right. = 0 \hfill \\ (1 - l^{2} \nabla^{2} )\left( {A_{11} \frac{\partial u}{\partial x} + B_{11} \frac{{\partial \psi_{x} }}{\partial x} + A_{12} \left( {\frac{\partial v}{R\partial \theta } + \frac{w}{R}} \right) + B_{12} \frac{{\partial \psi_{\theta } }}{R\partial \theta }} \right)\;{\text{at}}\,x = 0,L \hfill \\ (1 - l^{2} \nabla^{2} )\left( {B_{11} \frac{\partial u}{\partial x} + D_{11} \frac{{\partial \psi_{x} }}{\partial x} + B_{12} \left( {\frac{\partial v}{R\partial \theta } + \frac{w}{R}} \right) + D_{12} \frac{{\partial \psi_{\theta } }}{R\partial \theta }} \right)\,{\text{at}}\,x = 0,L \hfill \\ \delta \psi_{\theta } \left| {_{x = 0,L} } \right. = 0 \hfill \\ \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahinzare, M., Mohammadi, K., Ghadiri, M. et al. Size-dependent effects on critical flow velocity of a SWCNT conveying viscous fluid based on nonlocal strain gradient cylindrical shell model. Microfluid Nanofluid 21, 123 (2017). https://doi.org/10.1007/s10404-017-1956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1956-x

Keywords

Navigation