Skip to main content

Advertisement

Log in

Modeling the effect of microstructure on the coupled torsion/bending instability of rotational nano-mirror in Casimir regime

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

It has been well-established that the physical performance of nano-devices might be affected by the microstructure. Herein, a 2-degree-of-freedom model based on the modified couple stress elasticity is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nano-electromechanical mirror. The governing equation of the mirror is derived incorporating the effects of electrostatic Coulomb and corrected Casimir forces with the consideration of the finite conductivity of interacting surfaces. Effect of microstructure-dependency on the instability parameters are determined as a function of the microstructure parameter, bending/torsion coupling ratio, vacuum fluctuation parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the mirrors especially those with long rotational beam elements. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nano-mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdi J, Koochi A, Kazemi AS, Abadyan M (2011) Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Mater Struct 2 20(5):055011

    Article  Google Scholar 

  • Akgoz B, Civalek O (2011a) Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr Appl Phys 11:1133–1138

    Article  Google Scholar 

  • Akgoz B, Civalek O (2011b) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280

    Article  MathSciNet  Google Scholar 

  • Akgoz B, Civalek O (2014) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vibration Control 20(4):606–616

    Article  MathSciNet  Google Scholar 

  • Akgoz B, Civalek O (2015a) A novel microstructure-dependent shear deformable beam model. Int J Mech Sci 99:10–20

    Article  MATH  Google Scholar 

  • Akgoz B, Civalek O (2015b) A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech 226:2277–2294

    Article  MathSciNet  MATH  Google Scholar 

  • Akgöz B, Civalek O (2014) Shear deformation beam models for functionally graded microbeams with new shear correction factors. Composite Struct 112:214–225

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2007) Effects of Casimir force on pull-in instability in micromembranes. Eur Phys Lett 77:20010

    Article  Google Scholar 

  • Beni YT (2015) Using modified couple stress theory to investigate the size-dependent instability of rotational nano-actuator under van der Waals force. APJES 3:42–47

    Article  Google Scholar 

  • Beni YT, Abadyan M (2013) Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force. Int J Modern Phys B 27:1350083

    Article  MathSciNet  Google Scholar 

  • Beni YT, Abadyan M, Koochi A (2011) Effect of the Casimir attraction on the torsion/bending coupled instability of electrostatic nano-actuators. Phys Scripta 84:065801

    Article  Google Scholar 

  • Beni YT, Koochi A, Kazemi AS, Abadyan M (2012) Modeling the influence of surface effect and molecular force on pull-in voltage of rotational nano–micro mirror using 2-DOF model. Can J Phys 90:963–974

    Article  Google Scholar 

  • Bezerra VB, Klimchitskaya GL, Romero C (1997) Casimir force between a flat plate and a spherical lens: application to the results of a new experiment. Modern Phys Lett A 12:2613–2622

    Article  MATH  Google Scholar 

  • Bochobza-Degani O, Nemirovsky Y (2002) Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sensor Actuator A 97:569–578

    Article  Google Scholar 

  • Buks E, Roukes ML (2001) Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys Rev B 63:033402

    Article  Google Scholar 

  • Capasso F, Munday JN, Iannuzzi D, Chen HB (2007) Casimir forces and quantum electrodynamical torques: physics and nanomechanics. IEEE J Select Topics Quantum Electron 13:400–414

    Article  Google Scholar 

  • Daqaq MF, Abdel-Rahman EM, Nayfeh AH (2008) Towards a stable low-voltage torsional microscanner. Microsys Tech 14:725–737

    Article  Google Scholar 

  • Degani O, Nemirovsky Y (2002) Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions. J Microelectromech Sys 11:20–26

    Article  Google Scholar 

  • Degani O, Socher E, Lipson A, Leitner T, Setter DJ, Kaldor S, Nemirovsky Y (1998) Pull-in study of an electrostatic torsion microactuator. J Microelectromech Sys 7(4):373–379

    Article  Google Scholar 

  • Duan JS, Rach R (2013) A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects. Int J Solid Struct 50:3511–3518

    Article  Google Scholar 

  • Dym CL, Shames IH (1984) Solid mechanics: a variational approach. Railway Publishing House, Beijing

    MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Ford JE, Aksyuk VA, Bishop DJ, Walker JA (1999) Wavelength add-drop switching using tilting micromirrors. J Lightwave Tech 17:904

    Article  Google Scholar 

  • Guo JG, Zhao YP (2004) Influence of van der Waals and Casimir forces on electrostatic torsional actuators. J Microelectromech Sys 13(6):1027–1035

    Article  Google Scholar 

  • Guo JG, Zhao YP (2006) Dynamic stability of electrostatic torsional actuators with van der Waals effect. Int J Solid Struct 43:675–685

    Article  MATH  Google Scholar 

  • Hargreaves C M (1965) Corrections to the related dispersion force between metal bodies. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen

  • Huang JM, Liu AQ, Deng ZL, Zhang QX, Ahn J, Asundi A (2004) An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors. Sensor Actuator A 115:159–167

    Article  Google Scholar 

  • Koochi A, Farrokhabadi A, Abadyan M (2015) Modeling the size dependent instability of NEMS sensor/actuator made of nano-wire with circular cross-section. Microsys Tech 21:355–364

    Article  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solid 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Lambrecht A, Jaekel MT, Reynaud S (1997) The Casimir force for passive mirrors. Phys Lett A 225:188–194

    Article  MathSciNet  MATH  Google Scholar 

  • Lamoreaux SK (1999) Calculation of the Casimir force between imperfectly conducting plates. Phys Rev A 59:R3149

    Article  Google Scholar 

  • Lamoreaux SK (2004) The Casimir force: background, experiments, and applications. Rep Prog Phys 68:201

    Article  Google Scholar 

  • Lin WH, Zhao YP (2003) Dynamics behavior of nanoscale electrostatic actuators. Chin Phys Lett 20:2070–2073

    Article  Google Scholar 

  • Lin WH, Zhao YP (2005) Casimir effect on the pull-in parameters of nanometer switches. Microsys Tech 11:80–85

    Article  Google Scholar 

  • Lin WH, Zhao YP (2007a) Influence of damping on the dynamical behavior of the electrostatic parallel-plate and torsional actuators with intermolecular forces. Sensors 7:3012–3026

    Article  Google Scholar 

  • Lin WH, Zhao YP (2007b) Stability and bifurcation behaviour of electrostatic torsional NEMS varactor influenced by dispersion forces. J Phys D 40:1649

    Article  Google Scholar 

  • Miandoab EM, Yousefi-Koma A, Pishkenari HN (2015) Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsys Tech 21:457–464

    Article  MATH  Google Scholar 

  • Moeenfard H, Ahmadian MT (2013) Analytical modeling of bending effect on the torsional response of electrostatically actuated micromirrors. Optik 124:1278–1286

    Article  Google Scholar 

  • Moeenfard H, Darvishian A, Zohoor H, Ahmadian MT (2012) Characterization of the static behavior of micromirrors under the effect of capillary force, an analytical approach. J Mech Eng Sci 226:2361–2372

    Article  MATH  Google Scholar 

  • Nemirovsky Y, Bochobza-Degani O (2001) A methodology and model for the pull-in parameters of electrostatic actuators. J Microelectromech Sys 10:601–615

    Article  Google Scholar 

  • Noruzifar E, Emig T, Zandi R (2011) Universality versus material dependence of fluctuation forces between metallic wires. Phys Rev A 84:042501

    Article  Google Scholar 

  • Peng JS, Yang L, Yang J (2015) Size effect on the dynamic analysis of electrostatically actuated micro-actuators. Microsys Tech. doi:10.1007/s00542-015-2788-9

    Google Scholar 

  • Rahaeifard M, Kahrobaiyan MH, Asghari M, Ahmadian MT (2011) Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens Actuators A 171:370–374

    Article  MATH  Google Scholar 

  • Rezazadeh G, Khatami F, Tahmasebi A (2007) Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors. Microsys Tech 13:715–722

    Article  Google Scholar 

  • Rodriguez AW, Capasso F, Johnson SG (2011) The Casimir effect in microstructured geometries. Nat Photonics 5:211–221

    Article  Google Scholar 

  • Sedighi HM (2014) The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and van der Waals attractions. Int J Appl Mech 6:1450030

    Article  Google Scholar 

  • Sedighi HM, Koochi A, Abadyan M (2014) Modeling the size-dependent static and dynamic pull-in instability of Cantilever nanoactuator based on strain gradient theory. Int J Appl Mech 6:1450055

    Article  Google Scholar 

  • Tong P, Yang F, Lam DC, Wang J (2004) Size effects of hair-sized structures–torsion. In Key Eng Mater 261:11–22

    Article  Google Scholar 

  • Toshiyoshi H, Fujita H (1996) Electrostatic micro torsion mirrors for an optical switch matrix. J Microelectromech Sys 5:231–237

    Article  Google Scholar 

  • Tsiatas GC, Katsikadelis JT (2011) A new microstructure-dependent Saint–Venant torsion model based on a modified couple stress theory. Eur J Mech A 30:741–747

    Article  MathSciNet  MATH  Google Scholar 

  • Wen-Hui L, Ya-Pu Z (2003) Dynamic behaviour of nanoscale electrostatic actuators. Chin Phys Lett 20:2070

    Article  Google Scholar 

  • Xiao Z, Wu X, Peng W, Farmer KR (2001) An angle-based design approach for rectangular electrostatic torsion actuators. J Microelectromech Sys 10:561–568

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solid Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Zhang XM, Chau FS, Quan C, Lam YL, Liu AQ (2001) A study of the static characteristics of a torsional micromirror. Sens Actuator A 90:73–81

    Article  Google Scholar 

  • Zhao JP, Chen HL, Huang JM, Liu AQ (2005) A study of dynamic characteristics and simulation of MEMS torsional micromirrors. Sens Actuator A 120:199–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abadyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keivani, M., Koochi, A., Mokhtari, J. et al. Modeling the effect of microstructure on the coupled torsion/bending instability of rotational nano-mirror in Casimir regime. Microsyst Technol 23, 2931–2942 (2017). https://doi.org/10.1007/s00542-016-3094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3094-x

Keywords

Navigation