Skip to main content

Advertisement

Log in

A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.M. Zhang, F.S. Chau, C. Quan, Y.L. Lam, A.Q. Liu, Sensor Actuators A 90, 73 (2001)

    Article  Google Scholar 

  2. W.H. Lin, Y.P. Zhao, J. Phys. D 40, 1649 (2007)

    Article  ADS  Google Scholar 

  3. C. Venkatesh, N. Bhat, 8(1), 129 (2008)

  4. C. Venkatesh, S. Pati, N. Bhat, R. Pratap, Sensors Actuators A 121(2), 480 (2005)

    Article  Google Scholar 

  5. C. Venkatesh, N. Bhat, K.J. Vinoy, S. Grandhi, J. Micro-Nanolith. Mem. 11(1), 013006 (2012)

    Article  Google Scholar 

  6. O. Degani, Y. Nemirovsky, J. Microelectromech. Syst. 11, 20 (2002)

    Article  Google Scholar 

  7. H. Moeenfard, A. Darvishian, M.T. Ahmaidan, J. Mech. Sci. Technol. 26, 537 (2012)

    Article  Google Scholar 

  8. J.E. Ford, V.A. Aksyuk, D.J. Bishop, J.A. Walker, J. Lightwave Technol. 17, 904 (1999)

    Article  ADS  Google Scholar 

  9. J.G. Guo, Y.P. Zhao, J. Microelectromech. Syst. 13(6), 1027 (2004)

    Article  MathSciNet  Google Scholar 

  10. J.G. Guo, Y.P. Zhao, Int. J. Solids Struct. 43, 675 (2006)

    Article  Google Scholar 

  11. F. Khatami, G. Rezazadeh, Microsyst. Technol. 15, 535 (2009)

    Article  Google Scholar 

  12. H.M. Sedighi, K.H. Shirazi, Acta Mech. Solida Sin. 28(1), 91 (2015)

    Article  Google Scholar 

  13. M.I. Younis, F. Alsaleem, D. Jordy, Int. J. Nonlin. Mech. 42(4), 643 (2007)

    Article  Google Scholar 

  14. M. Taghizadeh, H. Mobki, Arch. Mech. 66(2), 95 (2014)

    MathSciNet  Google Scholar 

  15. J.P. Zhao, H.L. Chen, J.M. Huang, A.Q. Liu, Sensors Actuators A 120, 199 (2005)

    Article  Google Scholar 

  16. H. Moeenfard, M.T. Ahmadian, Optik 124(12), 1278 (2013)

    Article  ADS  Google Scholar 

  17. Z.X. Xiao, X.T. Wu, W.Y. Peng, K.R. Farmer, J. Microelectromech. Syst. 10, 561 (2001)

    Article  Google Scholar 

  18. Y. Nemirovsky, O. Degani, J. Microelectromech. Syst. 10, 601 (2001)

    Article  Google Scholar 

  19. O. Degani, E. Socher, A. Lipson, T. Leitner, D.J. Setter, S. Kaldor, Y.J. Nemirovsky, Microelectromech. Syst. 7(4), 373 (1998)

    Article  Google Scholar 

  20. H. Moeenfard, A. Darvishian, H. Zohoor, M.T. Ahmadian, J. Mech. Eng. Sci. 226(9), 2361–2372 (2012)

    Article  Google Scholar 

  21. O.B. Degani, Y. Nemirovisky, Sensor Actuators A 97–98, 569 (2001)

    Google Scholar 

  22. J.M. Huang, A.Q. Liu, Z.L. Deng, Q.X. Zhang, J. Ahn, A. Asundi, Sensor Actuators A 115(1), 159 (2004)

    Article  Google Scholar 

  23. G. Rezazadeh, F. Khatami, A. Tahmasebi, Microsyst. Tech. 13, 715 (2007)

    Article  Google Scholar 

  24. Y. Tadi Beni, A. Koochi, A.S. Kazemi, M. Abadyan, Can. J. Phys. 90(10), 963 (2012)

    Article  ADS  Google Scholar 

  25. Y. Tadi, Iran J. Sci. B 36(M1), 41 (2012)

    Google Scholar 

  26. N.H. Nguyen, M.Y. Lee, J.S. Kim, D.Y. Lee, Shock Vibration 2015, 672831 (2015)

    Google Scholar 

  27. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metall. Mater. 42(2), 475 (1994)

    Article  Google Scholar 

  28. B. Akgöz, Ö. Civalek, Curr. Appl. Phys. 11, 1133–1138 (2011)

    Article  ADS  Google Scholar 

  29. B. Akgoz, O. Civalek, Int. J. Eng. Sci. 49(11), 1268 (2011)

    Article  MathSciNet  Google Scholar 

  30. J. Abdi, A. Koochi, A.S. Kazemi, M. Abadyan, Smart Mater. Struct. 20(5), 055011 (2011)

    Article  ADS  Google Scholar 

  31. Y. Tadi Beni, A. Koochi, M. Abadyan, Physica E 43, 979 (2011)

    Article  ADS  Google Scholar 

  32. J.G. Guo, Y.P. Zhao, Int. J. Solids Struct. 43, 675 (2006)

    Article  Google Scholar 

  33. Y. Tadi Beni, M. Abadyan, Int. J. Mod. Phys. B 27(18), 1350083 (2013)

    Article  Google Scholar 

  34. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39(10), 2731 (2002)

    Article  Google Scholar 

  35. P. Tong, F. Yang, D.C.C. Lam, J. Wang, Key Eng. Mater. 261–263, 11–22 (2004)

    Article  Google Scholar 

  36. C.L. Dym, I.H. Shames, Solid Mechanics: A Variational Approach (Railway Publishing House, Beijing, 1984)

    MATH  Google Scholar 

  37. N.H. Nguyen, B.D. Lim, D.Y. Lee, Int. J. Precision Eng. Manufact. 16(4), 749–754 (2015)

    Article  Google Scholar 

  38. N.H. Nguyen, B.D. Lim, D.Y. Lee, Struct. Eng. Mech. 54(1), 189–198 (2015)

    Article  Google Scholar 

  39. G.C. Tsiatas, J.T. Katsikadelis, Eur. J. Mech. A-Solid 30, 741–747 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abadyan.

Appendices

Appendix 1

In order to calculate the elastic moment M elas of the nanobeam based on MCST, one can start with the Saint-Venant’s approach and assume the displacement field as [36]:

$$\begin{aligned} & u_{1} = - \varOmega YZ \hfill \\ & u_{2} = - \varOmega XZ \hfill \\ & u_{3} = \varOmega \varPhi (X,Y) \hfill \\ \end{aligned}$$
(27)

where u 1 , u 2 and u 3 are the displacement along the X, Y and Z direction, respectively. Furthermore, Ω is the angle of twist per unit length along the beam, and the function Φ(X, Y) is the warping function depending on X and Y only. For more details about warping effect, see [37, 38].

The governing equation of the torsional bar based on MCST can be obtained as (see [35, 39] for details):

$$\frac{{l^{2} }}{4}\frac{{\partial^{4} \varPhi }}{{\partial X^{4} }} + \frac{{l^{2} }}{4}\frac{{\partial^{4} \varPhi }}{{\partial Y^{4} }} + \frac{{l^{2} }}{2}\frac{{\partial^{4} \varPhi }}{{\partial X^{2} \partial Y^{2} }} - \frac{{\partial^{2} \varPhi }}{{\partial X^{2} }} - \frac{{\partial^{2} \varPhi }}{{\partial Y^{2} }} = 0$$
(28)

with the boundary conditions of:

$$\begin{aligned} &\frac{\partial \varPhi }{\partial n} - \frac{{l^{2} }}{4}\frac{{\partial^{3} \varPhi }}{{\partial n^{3} }} - \frac{{l^{2} }}{2}\frac{{\partial^{3} \varPhi }}{{\partial n\partial s^{2} }} + \frac{{l^{2} }}{2}\frac{\partial }{\partial s}\left( {\frac{1}{\rho }\frac{\partial \varPhi }{\partial s}} \right) - n_{X} Y + n_{Y} X = 0 \hfill \\ &\frac{{\partial^{2} \varPhi }}{{\partial n^{2} }} - \frac{{\partial^{2} \varPhi }}{{\partial s^{2} }} - \frac{2}{\rho }\frac{\partial \varPhi }{\partial n} = 0 \hfill \\ \end{aligned}$$
(29)

In the above relations, ρ, n(n x ,n y ) and s(−n y ,n x ) are the curvature, the unit vector normal to the boundary and the unit tangent to the boundary, respectively [35, 39].

Appendix 2

It should be noted that for thick and short beam (i.e., L/t < 20) the Timoshenko beam model should be used [26]. However, the difference between the 1-DOF and 2-DOF results is negligible for L/t < 20, and simple 1-DOF model can be used (see Fig. 6). Hence, the Euler–Bernoulli beam theory is employed in this work. Based on the Euler–Bernoulli beam theory, components of the displacement vector for bending beam are expressed as [36]

$$\begin{aligned} u_{1} \left( Z \right) & = 0 \\ u_{2} \left( Z \right) & = v(Z) \\ u_{3} \left( Z \right) & = - Y\frac{\partial v(Z)}{\partial Z} \\ \end{aligned}$$
(30)

where u 1 , u 2 and u 3 are the displacement along the X, Y and Z direction, respectively.

By substituting this displacement field in Eq. (2) and substituting the results in Eq. (1), the bending elastic energy, U b, can be determined as:

$$U_{\text{b}} = \frac{1}{2}\int\limits_{0}^{L} {\left( {EI + \mu Al^{2} } \right)\left( {\frac{{{\text{d}}^{2} v}}{{{\text{d}}Z^{2} }}} \right)}^{2} {\text{d}}z$$
(31)

The work by the external forces can be obtained as:

$$w_{\text{e}} \int_{0}^{{v = \nu ( {\text{L)}}}} {\left( {\frac{1}{2}[F_{\text{vdW}} + F_{\text{elec}} ]} \right){\text{d}}w}$$
(32)

As a trial solution for deflection of the nanobeam, the first mode shape which satisfies the boundary conditions can be selected as:

$$V(Z) = \frac{\delta }{1.588}[\cosh (2.365Z) - \cos (2.365Z) - V0.9825(\sinh (2.365Z) - \sin (2.365Z))$$
(33)

By substituting Eq. (33) in Eq. (31), the total energy of system, П, can be written as:

$$\varPi = \varPi = U_{\text{b}} - W_{\text{e}} = \frac{{6.2015({\text{EI}} + \mu Al^{2} )}}{{L^{3} }}\delta^{2} - \frac{1}{2}\int_{0}^{\delta } {\left( {F_{{v{\text{d}}W}} + F_{\text{elec}} } \right){\text{d}}v}$$
(34)

By imposing the minimum energy for equilibrium, i.e., \(\frac{\partial \varPi }{\partial \delta } = 0\), we obtain relations (24) for nanobeam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keivani, M., Abadian, N., Koochi, A. et al. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner. Appl. Phys. A 122, 927 (2016). https://doi.org/10.1007/s00339-016-0458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0458-0

Keywords

Navigation