Skip to main content
Log in

A measurement free pre-etched pattern to identify the <110> directions on Si{110} wafer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we present a self-aligning pre-etched pattern based technique to precisely determine the <110> direction on Si{110} wafer surface. These patterns after etching, reveals the crystallographic direction by self-aligning itself in a straight line at the <110> direction while getting self-misaligned at other directions. As a result, the exact direction can be identified by a simple visual inspection under a microscope without the need of measurement of any kind. To test the accuracy of the proposed method, we fabricated two 32 mm long channels, one oriented along the <110> direction and other along the <112> directions using the <110> direction obtained from the proposed method as the reference. The undercutting is measured at different locations on the two channels and is found to vary within a submicron range in each case. Such uniform undercutting implies that the presented technique to determine the <110> direction is accurate. This methodology is simple and can be used conveniently to fabricate MEMS structures with high dimensional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn M, Heilmann RK, Schattenburg ML (2007) Fabrication of ultrahigh aspect ratio free standing gratings in Silicon on insulator wafers. J Vac Sci Technol.B 25:2593–2597

  • Ashok A, Pal P (2015) Silicon micromachining in 25 wt% TMAH without and with surfactant concentrations ranging from ppb to ppm. Microsyst Technol, pp 1–8

  • Backlund Y, Rosengren L (1992) New shapes in (100) Si using KOH and EDP etches. J Micromech Microeng 27:5–9

    Google Scholar 

  • Baryeka I, Zubel I (1995) Silicon anisotropic etching in KOH-isopropanol etchant. Sens Actuators, A 48:229–238

    Article  Google Scholar 

  • Chang WH, Huang YC (2005) A new pre-etching pattern to determine (1 1 0) crystallographic orientation on both (100) and (1 1 0) silicon wafers. Microsys Technol 11:117–128

    Article  Google Scholar 

  • Choi WK, Thong JTL, Luo P, Tan CM, Chua TH, Bai Y (1998) Characterisation of pyramid formation arising from the TMAH etching of silicon. Sens Actuators, A 71:238–243

    Article  Google Scholar 

  • Ciarlo DR (1992) A latching accelerometer fabricated by the anisotropic etching of (110) oriented silicon wafers. J Micromech Microeng 2:10–13

    Article  Google Scholar 

  • Dutta S, Imran Md, Kumar P, Pal R, Datta P, Chatterjee R (2011) Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon (110). Microsyst Technol 17:1621–1628

    Article  Google Scholar 

  • Ensell G (1996) Alignment of mask patterns to crystal orientation. Sens Actuators, A 53:345–348

    Article  Google Scholar 

  • Gosalvez MA, Pal P, Tang B, Sato K (2010) Atomistic mechanism for the macroscopic effects induced by small additions of surfactants to alkaline etching solutions. Sens Actuators, A 157:91–95

    Article  Google Scholar 

  • Holke A, Henderson HT (1999) Ultra-deep anisotropic etching of (110) silicon. J Micromech Microeng 9:51–57

    Article  Google Scholar 

  • James TD, Parish G, Winchester KJ, Musca CA (2006) A crystallographic alignment method in silicon for deep, long microchannel fabrication. J Micromech Microeng 16:2177–2182

    Article  Google Scholar 

  • Kendall DL (1979) Vertical etching of silicon at very high aspect ratios. Annu Rev Mater Sci 9:373–403

    Article  Google Scholar 

  • Kim HS, Kim JM, Bang YS, Song ES, Ji CH, Kim YK (2012) Fabrication of a vertical sidewall using double-sided anisotropic etching of (100) oriented silicon. J Micromech Microeng 22:095014

  • Lai JM, Chieng WH, Huang YC (1998) Precision alignment of mask etching with respect to crystal orientation. J Micromech Microeng 8:327–329

    Article  Google Scholar 

  • Lee S, Park S, Cho D (1999) The surface/bulk micro- machining (sbm) process: a new method for fabricating released microelectromechanical systems in single crystal silicon. J Microelectromech Syst 8:409–416

    Article  Google Scholar 

  • Lee D, Yu K, Krishnamoorthy U, Solgaard O (2009) Vertical mirror fabrication combining KOH etch and DRIE of (1 1 0) silicon. J Microelectromech Syst 18:217–227

    Article  Google Scholar 

  • Lu H, Zhang H, Jin M, He T, Zhou G, Shui L (2016) Two-layer microstructures fabricated by one-step anisotropicwet etching of Si in KOH solution. Micromachines 7:1–7

    Article  Google Scholar 

  • Pal P, Chandra S (2004) Bulk-micromachined structures inside anisotropically etched cavities. Smart Mater Struct 13:1424–1429

    Article  Google Scholar 

  • Pal P, Sato K (2009) Complex three dimensional structures in Si{100} using wet bulk micromachining. J Micromech Microeng 19:105008

  • Pal P, Sato K (2009) Various shapes of silicon freestanding microfluidic channels and microstructures in one step lithography. J Micromech Microeng 19(5):055003

  • Pal P, Sato K (2010) Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst Technol 16:1165–1174

    Article  Google Scholar 

  • Pal P, Sato K (2015) A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching. Micro Nano Syst Lett 3:1–42

    Article  Google Scholar 

  • Pal P, Singh SS (2013a) A simple and robust model to explain convex corner undercutting in wet bulk micromachining. Micro Nano Systs Lett 1:1–6

    Article  Google Scholar 

  • Pal P, Singh SS (2013b) A new model for the etching characteristics of corners formed by Si 111 planes on Si 110 wafer surface. Eng 5:1–8

    Article  Google Scholar 

  • Pal P, Sato K, Gosalvez M A, Tang B, Hida H, Shikida M (2011) Fabrication of novel microstructures based on orientation dependent adsorption of surfactant molecules in TMAH solution. J Micromech Microeng 21(1):015008

  • Pal P, Gosalvez M A, Sato K, Hida H, Xing Y (2014) Anisotropic etching on Si{110}: Experiment and simulation for the formation of microstructures with convex corners. J Micromech Microeng 24:125001

  • Pal P, Haldar S, Singh SS, Ashok A, Xing Y, Sato K (2014) A detailed investigation and explanation to the appearance of different undercut profiles in KOH and TMAH. J Micromech Microeng 24:095026

  • Pal P, Ashok A, Haldar S, Xing Y, Sato K (2015) Anisotropic etching in low concentration KOH: effects of surfactant concentration. Micro Nano Letters 10:224–228

    Article  Google Scholar 

  • Powell O, Harrison HB (2001) Anisotropic etching of 100 and 110 planes in (100) silicon. J Micromech Microeng 11:217–220

    Article  Google Scholar 

  • Resnik D, Vrtacnik D, Aljancic U, Amon S (2003) Effective roughness reduction of 100 and 311 planes in anisotropic etching of 100 silicon in 5 % TMAH. J Micromech Microeng 13:26–34

    Article  Google Scholar 

  • Rola KP, Ptasinski K, Zakrzewski A, Zubel I (2014) Silicon 45° micromirrors fabricated by etching in alkaline solutions with organic additives. Microsyst Technol 20:221–226

    Article  Google Scholar 

  • Schnakenberg U, Benecke W, Lochel B (1990) NH4OH-based etchant for silicon micromachining. Sens Actuators, A 23:1031–1035

    Article  Google Scholar 

  • Seidel H, Csepregi L, Heuberger A, Baumgartel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions I: orientation dependence and behavior of passivation layers. J Electrochem Soc 137(11):3612–3626

    Article  Google Scholar 

  • Singh S S, Veerla S, Sharma V, Pandey A K, Pal P (2016) Precise identification of <100> directions on Si {001} wafer using a novel self-aligning pre-etched technique J Micromech Microeng 26:25012

  • Tabata O, Asahi R, Funabashi H, Shimaoka K, Sugiyama S (1992) Anisotropic etching of silicon in TMAH solutions. Sens Actuators, A 34:51–57

    Article  Google Scholar 

  • Tanaka H, Yamashita S, Abe Y, Shikida M, Sato K (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuators, A 114:516–520

    Article  Google Scholar 

  • Tang B, Sato K (2011) Formation of silicon nano tips in surfactant-modified wet anisotropic etching. Applied Physics Express 4(56501):1–3

  • Tang B, Yao MQ, Tan G, Pal P, Sato K, Su W (2014) Smoothness control of wet etched Si{100} surfaces in TMAH + Triton. Key Eng Mater 609:536–541

    Google Scholar 

  • Tellier CR, Charbonnieras AR (2003) Characterization of the anisotropic chemical attack of (hhl) silicon plates in a TMAH 25 wt% solution: micromachining and adequacy of the dissolution slowness surface. Sens Actuators, A 105:62–75

    Article  Google Scholar 

  • Tolmachev VA, Granitsyna LS, Vlasova EN, Volchek BZ, Nashchekin AV, Remenyuk AD, Astrova EV (2002) One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon. Semiconductors 36:932–935

    Article  Google Scholar 

  • Tseng FG, Chang KC (2003) Precise [100] crystal orientation determination on 110 oriented silicon wafers. J Micromech Microeng 13:47–52

    Article  Google Scholar 

  • Vangbo M, Baecklund Y (1996) Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching. J Micromech Microeng 6:279–284

    Article  Google Scholar 

  • Xing Y, Gosalvez MA, Sato K (2007) Step flow-based cellular automaton for the simulation of anisotropic etching of complex MEMS structures. New J Phys 9:436 (18 pp)

  • Xu YW, Michael A, Kwok CY (2011) Formation of ultra-smooth 45◦ micromirror on (100) silicon with low concentration TMAH and surfactant: techniques for enlarging the truly 45° portion. Sens Actuators, A 166:164–171

    Article  Google Scholar 

  • Yagyu H, Yamaji T, Nishimura M, Sato K (2010) Forty-five degree micromirror fabrication using silicon anisotropic etching with surfactant-added tetramethylammonium hydroxide solution. Jpn J Appl Phys 49(096503):1–8

  • Zhang H, Xing Y, Gosalvez MA, Pal P, Sato K (2015) Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives. Sens Actuators, A 233:451–459

    Article  Google Scholar 

  • Zubel I, Kramkowska M (2009) Possibilities of extension of 3D shapes by bulk micromachining of different Si (hk l) substrates J Micromech Microeng 15:485–493

Download references

Acknowledgments

This work was supported by research grant from the Council of Scientific and Industrial Research (CSIR, Ref: 03(1320)/14/EMR-II), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. S. Singh or P. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.S., Avvaru, V.N., Veerla, S. et al. A measurement free pre-etched pattern to identify the <110> directions on Si{110} wafer. Microsyst Technol 23, 2131–2137 (2017). https://doi.org/10.1007/s00542-016-2984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2984-2

Keywords

Navigation