Skip to main content

Advertisement

Log in

Development and evaluation of a Venus flytrap-inspired microrobot

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nature has provided the inspiration for many robots, leading to the development of biomimetic machines based on stick insects, jellyfish, butterflies, lobsters, and inchworms. Some carnivorous plants are capable of rapid motion, including mimosa, Venus flytraps, telegraph plants, sundews, and bladderworts, all of which are of interest in the design of biomimetic robots that can be activated in a controlled manner to capture prey using trigger hairs. Here, we describe a biomimetic robotic inspired by a Venus flytrap and fabricated using two ionic polymer metal composite (IPMC) actuators. First, we describe the structure of the robotic flytrap, which consists of two IPMC lobes and a proximity sensor, and discuss the design of the control circuitry. We then evaluate the deformation and bending force of the IPMC actuator with various applied signal voltages. We describe a prototype robotic flytrap utilising a proximity sensor to imitate the trigger hairs of the Venus flytrap. We conducted an experiment to assess the feasibility of the biomimetic flytrap. To evaluate grasping ability, we measured the maximum grasping payload with different applied voltages. To enlarge the working area, we integrated biomimetic walking and rotating motion into the robotic Venus flytrap. This paper describes a prototype movable robotic Venus flytrap and evaluates its walking and rotating speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Behkam B, Sitti M (2006a) Design methodology for biomimetic propulsion of miniature swimming robots. J Dyn Syst Measurement Control 128(1):36–43

    Article  Google Scholar 

  • Behkam B, Sitti M (2006b) Design methodology for biomimetic propulsion of miniature swimming robots. J Dyn Syst Meas Control 128:36–43

    Article  Google Scholar 

  • Brunetto P, Fortuna L, Graziani S, Strazzeri S (2008) A model of ionic polymer–metal composite actuators in underwater operations. J Smart Mater Struct 17(2):025–029

    Article  Google Scholar 

  • Chu W, Lee K, Song S, Han M, Lee J, Kim H, Kim M, Park Y, Cho K, Ahn S (2012) Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf 13:1281–1292

    Article  Google Scholar 

  • Feng G, Liu K (2014) Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance. Sensors 14(5):8380–8397. doi:10.3390/s140508380

    Article  Google Scholar 

  • Guo S, Shi L, Xiao N, Asaka K (2012) A biomimetic underwater microrobot with multifunctional locomotion. Robot Auton Syst 60:1472–1483

    Article  Google Scholar 

  • He Qingsong, Min Yu, Song Linlin, Ding Haitao, Zhang Xiaoqing, Dai Zhendong (2011) Experimental study and model analysis of the performance of IPMC membranes with various thickness. J Bionic Eng 8(1):77–85

    Article  Google Scholar 

  • Heo S, Wiguna T, Park HC, Goo NS (2007) Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. J Bionic Eng 4:151–158

    Article  Google Scholar 

  • Jain PK, Datta S, Majumder S, Dutta A (2011) Two IPMC fingers based micro gripper for handling. Int J Adv Robotic Syst 8:1–9

    Article  Google Scholar 

  • Kim B, Kim D, Jung J, Park J (2005) A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater Struct 14:1579–1585

    Article  Google Scholar 

  • Kim S, Tiwari R, Kim K (2011) A novel ionic polymer metal zno composite (IPMZC). Sensors 11(5):4674–4687. doi:10.3390/s110504674

    Article  Google Scholar 

  • Lee S, Kim K, Park I (2007) Modeling and experiment of a muscle-like linear actuator using an ionic polymer–metal composite and its actuation characteristics. Smart Mater Struct 16:583–588

    Article  MathSciNet  Google Scholar 

  • Lin Y, Yu C, Li C, Liu C, Chen J, Chu T, Su G (2014) An ionic-polymer-metallic composite actuator for reconfigurable antennas in mobile devices. Sensors 14(1):834–847. doi:10.3390/s140100834

    Article  Google Scholar 

  • Liu W, Jia X, Wang F, Jia Z (2010) An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin. Sens Actuators A Phys 160(1):101–108

    Article  Google Scholar 

  • Park I, Kim S, Kim D, Kin K (2007) The mechanical properties of ionic polymer-metal composites. Proc SPIE. doi:10.1117/12.716670

    Google Scholar 

  • Shahinpoor M (2011) Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspir Biomim 6(4):046004, 1–11

  • Shi L, Guo S, Asaka K (2011) Development of a new jellyfish-type underwater microrobot. Int J Robot Autom 26(2):229–241

    Google Scholar 

  • Shi L, Guo S, Asaka K (2012a) A novel jellyfish- and butterfly-inspired underwater microrobot with pectoral fins. Int J Robot Autom 27(3):276–286

    Google Scholar 

  • Shi L, Guo S, Li M, Mao S, Xiao N, Gao B, Song Z, Asaka K (2012b) A novel soft biomimetic microrobot with two motion attitudes. Sensors 12(12):16732–16758

    Article  Google Scholar 

  • Shi L, Guo S, Kudo H, Asaka K (2012) Development of a Venus flytrap-inspired robotic flytrap, proceedings of 2012 IEEE International conference on robotics and biomimetics (ROBIO 2012), pp 551–556, Dec 11–14, Guangzhou, China

  • Shi L, Guo S, Mao S, Li M, Asaka K (2013a) Development of a lobster-inspired underwater microrobot. Int J Adv Rob Syst 10(44):1–15. doi:10.5772/54868

    Article  Google Scholar 

  • Shi LW, He YL, Guo SX, Kudo H, Li MX, Asaka K (2013) IPMC actuator-based a movable robotic Venus flytrap, proceedings of 2013 ICME international conference on complex medical engineering (ICME CME 2013), pp 375–378, May 25–28, Beijing, China

  • Villanueva A, Joshi K, Blottman J, Priya S (2010) A bio-inspired shape memory alloy composite (BISMAC) actuator. Smart Mater Struct 19(025013):1–17

    Google Scholar 

  • Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomim 6(3): 036004, 1–16

  • Wang Z, Hang G, Li J, Wang Y, Xiao K (2008) A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. J Sens Actuators A Phys 144(2):354–360

    Article  Google Scholar 

  • Wei H, Su G (2012) Design and fabrication of a large-stroke deformable mirror using a gear-shape ionic-conductive polymer metal composite. Sensors 12(8):11100–11112. doi:10.3390/s120811100

    Article  Google Scholar 

  • Yeom S, Oh I (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. J Smart Mater Struct 18(085002):1–16

    Google Scholar 

  • Yim W, Lee J, Kim KJ (2007) An artificial muscle actuator for biomimetic underwater propulsors. Bioinspir Biomim 2:S31–S41

    Article  Google Scholar 

  • Zhang W, Guo S, Asaka K (2006) A new type of hybrid fish-like microrobot. Int J Robot Autom Computing 3(4):358–365

    Article  Google Scholar 

  • Zhou Y, Chiu C-W, Sanchez CJ, González JM, Epstein B, Rhodes D, Vinson SB, Liang H (2013) Sound modulation in singing katydids using ionic polymer-metal composites (IPMCs). J Bionic Eng 10(4):464–468

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the excellent young scholars Research Fund of Beijing Institute of Technology and the Basic Research Fund of the Beijing Institute of Technology (No. 3160012211405). This work was partly supported by National Natural Science Foundation of China (61375094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Guo, S. Development and evaluation of a Venus flytrap-inspired microrobot. Microsyst Technol 22, 1949–1958 (2016). https://doi.org/10.1007/s00542-015-2484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2484-9

Keywords

Navigation