Skip to main content
Log in

A bioinspired, self-powered, flytrap-based sensor and actuator enabled by voltage triggered hydrogel electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Because of its adaptive interfacial property, soft sensors/actuators can be used to perform more delicate tasks than their rigid counterparts. However, plant epidermis with a waxy cuticle layer challenges stable and high-fidelity non-invasive electrophysiology since the conventional electrodes are invasive, easily detached from plants, and require complicated setup procedures. Here, we report a bioinspired sensor and actuator created by using a conformable electrode interface as an electrical modulation unit on a Venus flytrap. Our conformable electrode, by employing an adhesive hydrogel layer, can achieve the merits of low impedance, stretchable, biocompatible, reusable, and transparent enough for normal chlorophyll activity to occur. Owing to the high sensitivity of a flytrap to a triggering mechanical stimulation, a plant sensor matrix based on flytraps has been demonstrated by capturing the stimulated action potential (AP) signals from upper epidermis, which can orient honeybee colonies by their touch during collecting nectar. Moreover, via frequency-dependent AP modulation, an autonomous on-demand actuation on a flytrap is realized. The flytrap actuator can be controlled to responsively grasp tiny objects by the modulated signals triggered by a triboelectric nanogenerator (TENG). This work paves a way of developing autonomous plant-based sensors and actuators toward smart agriculture and intelligent robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonn, N.; Greb, T. Radial plant growth. Curr. Biol. 2017, 27, R878–R882.

    CAS  Google Scholar 

  2. Dresselhaus, T.; Sprunck, S.; Wessel, G. M. Fertilization mechanisms in flowering plants. Curr. Biol. 2016, 26, R125–R139.

    CAS  Google Scholar 

  3. Luo, Y. F.; Li, W. L.; Lin, Q. Y.; Zhang, F. L.; He, K.; Yang, D. P.; Loh, X. J.; Chen, X. D. A morphable ionic electrode based on thermogel for non-invasive hairy plant electrophysiology. Adv. Mater. 2021, 33, 2007848.

    CAS  Google Scholar 

  4. Xie, J. J.; Wu, Y. Y.; Xing, D. K.; Li, Z. Y.; Chen, T.; Duan, R. R.; Zhu, X. X. A comparative study on the circadian rhythm of the electrical signals of Broussonetia papyrifera and Morus alba. Plant Signal. Behav. 2021, 16, 1950899.

    Google Scholar 

  5. Awan, H.; Adve, R. S.; Wallbridge, N.; Plummer, C.; Eckford, A. W. Communication and information theory of single action potential signals in plants. IEEE Trans. NanoBiosci. 2019, 18, 61–73.

    Google Scholar 

  6. Li, J. H.; Fan, L. F.; Zhao, D. J.; Zhou, Q.; Yao, J. P.; Wang, Z. Y.; Huang, L. Plant electrical signals: A multidisciplinary challenge. J. Plant Physiol. 2021, 261, 153418.

    CAS  Google Scholar 

  7. Najdenovska, E.; Dutoit, F.; Tran, D.; Plummer, C.; Wallbridge, N.; Camps, C.; Raileanu, L. E. Classification of plant electrophysiology signals for detection of spider mites infestation in tomatoes. Appl. Sci. 2021, 11, 1414.

    CAS  Google Scholar 

  8. Novacky, A.; Karr, A. L.; van Sambeek, J. W. Using electrophysiology to study plant disease development. BioScience 1976, 26, 499–504.

    Google Scholar 

  9. Ochatt, S. Plant cell electrophysiology: Applications in growth enhancement, somatic hybridisation and gene transfer. Biotechnol. Adv. 2013, 31, 1237–1246.

    CAS  Google Scholar 

  10. Lin, V. S. Interrogating plant-microbe interactions with chemical tools: Click chemistry reagents for metabolic labeling and activity-based probes. Molecules 2021, 26, 243.

    CAS  Google Scholar 

  11. Griffiths, C. A.; Sagar, R.; Geng, Y. Q.; Primavesi, L. F.; Patel, M. K.; Passarelli, M. K.; Gilmore, I. S.; Steven, R. T.; Bunch, J.; Paul, M. J. et al. Chemical intervention in plant sugar signalling increases yield and resilience. Nature 2016, 540, 574–578.

    CAS  Google Scholar 

  12. Mousavi, S. A. R.; Chauvin, A.; Pascaud, F.; Kellenberger, S.; Farmer, E. E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 2013, 500, 422–426.

    CAS  Google Scholar 

  13. Markin, V. S.; Volkov, A. G.; Jovanov, E. Active movements in plants: Mechanism of trap closure by Dionaea muscipula Ellis. Plant Signal. Behav. 2008, 3, 778–783.

    Google Scholar 

  14. Scherzer, S.; Federle, W.; Al-Rasheid, K. A. S.; Hedrich, R. Venus flytrap trigger hairs are micronewton mechano-sensors that can detect small insect prey. Nat. Plants 2019, 5, 670–675.

    CAS  Google Scholar 

  15. Hedrich, R.; Neher, E. Venus flytrap: How an excitable, carnivorous plant works. Trends Plant Sci. 2018, 23, 220–234.

    CAS  Google Scholar 

  16. Li, W. L.; Matsuhisa, N.; Liu, Z. Y.; Wang, M.; Luo, Y. F.; Cai, P. Q.; Chen, G.; Zhang, F. L.; Li, C. C.; Liu, Z. H. et al. An on-demand plant-based actuator created using conformable electrodes. Nat. Electron. 2021, 4, 134–142.

    Google Scholar 

  17. Volkov, A. G. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 2019, 125, 25–32.

    CAS  Google Scholar 

  18. Dechiraju, H.; Jia, M. P.; Luo, L.; Rolandi, M. Ion-conducting hydrogels and their applications in bioelectronics. Adv. Sustain. Syst. 2022, 6, 2100173.

    CAS  Google Scholar 

  19. Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913.

    CAS  Google Scholar 

  20. Liu, Y. X.; Liu, J.; Chen, S. C.; Lei, T.; Kim, Y.; Niu, S. M.; Wang, H. L.; Wang, X.; Foudeh, A. M.; Tok, J. B. H. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 2019, 3, 58–68.

    CAS  Google Scholar 

  21. Stavrinidou, E.; Gabrielsson, R.; Gomez, E.; Crispin, X.; Nilsson, O.; Simon, D. T.; Berggren, M. Electronic plants. Sci. Adv. 2015, 1, e1501136.

    Google Scholar 

  22. Wong, M. H.; Giraldo, J. P.; Kwak, S. Y.; Koman, V. B.; Sinclair, R.; Lew, T. T. S.; Bisker, G.; Liu, P. W.; Strano, M. S. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 2017, 16, 264–272.

    CAS  Google Scholar 

  23. Adeel Zafar, S.; Uzair, M.; Ramzan Khan, M.; Patil, S. B.; Fang, J. J.; Zhao, J. F.; Singla-Pareek, S. L.; Pareek, A.; Li, X. Y. DPS1 regulates cuticle development and leaf senescence in rice. Food Energy Secur. 2021, 10, e273.

    CAS  Google Scholar 

  24. Harikesh, P. C.; Yang, C. Y.; Tu, D. Y.; Gerasimov, J. Y.; Dar, A. M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.

    CAS  Google Scholar 

  25. Volkov, A. G.; Adesina, T.; Jovanov, E. Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal. Behav. 2007, 2, 139–145.

    Google Scholar 

  26. Volkov, A. G.; Adesina, T.; Jovanov, E. Charge induced closing of Dionaea muscipula Ellis trap. Bioelectrochemistry 2008, 74, 16–21.

    CAS  Google Scholar 

  27. Karban, R. Plant communication. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 1–24.

    Google Scholar 

  28. Mousavi, S. A. R.; Nguyen, C. T.; Farmer, E. E.; Kellenberger, S. Measuring surface potential changes on leaves. Nat. Protoc. 2014, 9, 1997–2004.

    CAS  Google Scholar 

  29. Pavloviič, A.; Jakšová, J.; Novák, O. Triggering a false alarm: Wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytol. 2017, 216, 927–938.

    Google Scholar 

  30. Zhou, P. D.; Lin, J.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Pressure-perceptive actuators for tactile soft robots and visual logic devices. Adv. Sci. 2022, 9, 2104270.

    CAS  Google Scholar 

  31. Liao, X. Q.; Wang, W. S.; Wang, L.; Jin, H. R.; Shu, L.; Xu, X. M.; Zheng, Y. J. A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces. Nano Energy 2021, 80, 105548.

    CAS  Google Scholar 

  32. Zhou, P. D.; Zhang, W.; Chen, L. Z.; Lin, J.; Luo, Z. L.; Liu, C. H.; Jiang, K. L. Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions. Nano Res. 2021, 14, 2456–2462.

    CAS  Google Scholar 

  33. Meder, F.; Saar, S.; Taccola, S.; Filippeschi, C.; Mattoli, V.; Mazzolai, B. Ultraconformable, self-adhering surface electrodes for measuring electrical signals in plants. Adv. Mater. Technol. 2021, 6, 2001182.

    CAS  Google Scholar 

  34. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    CAS  Google Scholar 

  35. Kim, J. J.; Allison, L. K.; Andrew, T. L. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 2019, 5, eaaw0463.

    CAS  Google Scholar 

  36. Rohaizad, N.; Mayorga-Martinez, C. C.; Novotný, F.; Webster, R. D.; Pumera, M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem. Commun. 2019, 103, 104–108.

    CAS  Google Scholar 

  37. Li, G. J.; Hu, S. Q.; Yang, J. J.; Schultz, E. A.; Clarke, K.; Hou, H. W. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants. Plant Cell Rep. 2017, 36, 1225–1236.

    CAS  Google Scholar 

  38. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    CAS  Google Scholar 

  39. Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

    CAS  Google Scholar 

  40. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    CAS  Google Scholar 

  41. Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Shanxi Province Science Foundation (No. 20210302123190) and Shanxi Scholarship Council of China (No. HGKY2019022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Lin Wang or Hulin Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Li, X., Zhang, X. et al. A bioinspired, self-powered, flytrap-based sensor and actuator enabled by voltage triggered hydrogel electrodes. Nano Res. 16, 10198–10205 (2023). https://doi.org/10.1007/s12274-023-5621-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5621-2

Keywords

Navigation