Skip to main content
Log in

The Development of a Venus Flytrap Inspired Soft Robot Driven by IPMC

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In recent years, more and more creatures in nature have become the source of inspiration for people to study bionic soft robots. Many such robots appear in the public’s vision. In this paper, a Venus flytrap robot similar to the biological Venus flytrap in appearance was designed and prepared. It was mainly cast by Polydimethylsiloxane (PDMs) and driven by the flexible material of Ionic Polymer Metal Composites (IPMCs). Combining with ANSYS and related experiments, the appropriate voltage and the size of IPMC were determined. The results showed that the performance of the Venus flytrap robot was the closest to the biological Venus flytrap when the size of IPMC length, width and driving voltage reach to 3 cm, 1 cm and 5.5 V, respectively. Moreover, the closing speed and angle reached 8.22°/s and 37°, respectively. Finally, the fly traps also could be opened and closed repeatedly and captured a small ball with a mass of 0.3 g firmly in its middle and tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mende, M., Scott, M. L., Van, D. J., Grewal, D., & Shanks, I. (2019). Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses. Journal of Marketing Research, 56, 535–556.

    Article  Google Scholar 

  2. Winn, Z. (2020). Robot helps patients manage chronic illness. USA Today Magazine, 149, 46–47.

    Google Scholar 

  3. Riek, L. D. (2017). Healthcare robotics. Communications of the ACM, 60, 68–78.

    Article  Google Scholar 

  4. Little, A. (2018). Problem: weeds solution: robots. Business Week, 4554, 54–59.

    Google Scholar 

  5. Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., & Huang, Y. M. (2021). Identificationof fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access, 9, 21986–21997.

    Article  Google Scholar 

  6. Wang, Y. X., Zhang, Y. H., Pu, Y., Zhang, J. T., & Wang, F. C. (2018). Design of a new fruit tree bagging machine. IOP Conference Series: Materials Science and Engineering, 452, 042099.

    Article  Google Scholar 

  7. Dong, X. P., & Wang, X. B. (2007). Development of rescue robot technology and its application in disaster. Journal of Disaster Prevention and Mitigation Engineering, 27, 112–117.

    Google Scholar 

  8. Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M., & Whitesides, G. M. (2011). Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108, 20400–20403.

    Article  Google Scholar 

  9. Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536, 451–455.

    Article  Google Scholar 

  10. Du, X. M., Cui, H. Q., Xu, T. T., Huang, C. Y., & Wu, X. Y. (2020). Hydrogel-based millirobots: Reconfiguration, camouflage, and color-hifting for bioinspired adaptive hydroge-based millirobots. Advanced Functional Materials, 30, 2070064.

    Article  Google Scholar 

  11. Yao, S. S., Cui, J. X., Cui, Z., & Zhu, Y. (2017). Soft electrothermal actuators using silver nanowire heaters. Nanoscale, 9, 3797–3805.

    Article  Google Scholar 

  12. Shi, L. W., Guo, S. X., Mao, S. L., Yue, C. F., Li, M. X., & Asaka, K. J. (2013). Development of an amphibious turtle-inspired spherical mother robot. Journal of Bionic Engineering, 10, 446–455.

    Article  Google Scholar 

  13. Zhou, Y., Chiu, C. W., Sanchez, C. J., González, J. M., Epstein, B., Rhodes, D., Vinson, S. B., & Liang, H. (2013). Sound modulation in singing katydids using ionic polymer-metal composites (IPMCs). Journal of Bionic Engineering, 10, 464–468.

    Article  Google Scholar 

  14. Chen, Y., Hu, B., Zou, J., Zhang, W., Wang, D., & Jin, G. (2020). Design and fabrication of a multi-motion mode soft crawling robot. Journal of Bionic Engineering, 17, 1–12.

    Article  Google Scholar 

  15. Nishikawa, Y., & Matsumoto, M. (2019). A design of fully soft robot actuated by gas-liquid phase change. Advanced Robotics, 33, 567–575.

    Article  Google Scholar 

  16. Kong, F., Zhu, Y., Yang, C., Jin, H. Z., & Cai, H. (2020). Integrated locomotion and deformation of a magnetic soft robot: modeling, control and experiments. IEEE Transactions on Industrial Electronics, 68, 5078–5087.

    Article  Google Scholar 

  17. Esser, F. J., Auth, P., & Speck, T. (2020). Artificial Venus Flytraps: A research review and outlook on their importance for novel bioinspired materials systems. Frontiers in Robotics and AI, 7, 75.

    Article  Google Scholar 

  18. Zhang, Z., Chen, D., Wu, H., Bao, Y., & Chai, G. (2016). Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure. Composite Structures, 135, 17–22.

    Article  Google Scholar 

  19. Wani, O. M., Zeng, H., & Priimagi, A. (2017). A light-driven artificial flytrap. Nature Communications, 8, 15546.

    Article  Google Scholar 

  20. Shahinpoor, M. (2011). Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspiration & Biomimetics, 6, 046004.

    Article  Google Scholar 

  21. Fortorre, Y., Skotheim, J. M., Dumais, J., & Mahadevan, L. (2005). How the Venus flytrap snaps. Nature, 433, 421–425.

    Article  Google Scholar 

  22. Hodick, D., & Sievers, A. (1989). On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta, 179, 32–42.

    Article  Google Scholar 

  23. Pavlovič, A., Slováková, L., Pandolfi, C., & Mancuso, S. (2011). On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). Journal of Experimental Botany, 62, 1991.

    Article  Google Scholar 

  24. Poppinga, S., Kampowski, T., Metzger, A., Speck, O., & Speck, T. (2016). Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps. Beilstein Journal of Nanotechnology, 7, 664–674.

    Article  Google Scholar 

  25. Sachse, R., Westermeier, A., Mylo, M., Nadasdi, J., Bischoff, M., Speck, T., & Poppinga, S. (2020). Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences, 117, 16035–16042.

    Article  Google Scholar 

  26. Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O., & Smith, J. (1998). Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review. Smart Materials & Structures, 7, 15–30.

    Article  Google Scholar 

  27. Li, Z., Qin, L., Zhang, D., Tian, A., Lau, H., & Gupta, U. (2020). Modeling and feedforward control of a soft viscoelastic actuator with inhomogeneous deformation. Extreme Mechanics Letters, 40, 100881.

    Article  Google Scholar 

  28. Li, Z., Lau, H., X, Chen., Wang, J., & Sun, P (2018). Experimental study on the variation of dielectric constant of dielectric elastomer actuator. 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Stuttgart, Germany, 8600872.

  29. Arshad, M., Du, H. L., Javed, M. S., Maqsood, A., Ashraf, I., Hussain, S., Ma, W., & Ran, H. (2020). Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceramics International, 46, 2238–2246.

    Article  Google Scholar 

  30. Du, H. L., Ma, C. Y., Ma, W. X., & Wang, H. T. (2018). Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process. Processing and Application of Ceramics, 12, 303–312.

    Article  Google Scholar 

  31. Hui, X., Tian, A. F., Wang, Q. Q., Yang, L., & Cui, S. S. (2020). Research on process optimization of Ag-IPMC. Integrated Ferroelectrics, 210, 106–115.

    Article  Google Scholar 

  32. Lee, J. W., Kim, J. H., Chun, Y. S., Yoo, Y. T., & Hong, S. M. (2009). The performance of Nafion-based IPMC actuators containing polypyrrole/alumina composite fillers. Macromolecular Research, 17, 1032–1038.

    Article  Google Scholar 

  33. Nemat-Nasser, S. (2002). Micromechanics of actuation of ionic polymer-metal composites. Journal of Applied Physics, 92, 2899–2915.

    Article  Google Scholar 

  34. Xu, Y., Du, Y., Zhao, X., Zhang, Y., Jia, W., & Wen, X. (2020). Research on Ag-IPMC force electric model and force output characteristics. Ionics, 26, 4153–4162.

    Article  Google Scholar 

  35. Tian, A. F., Wang, X. X., Sun, Y., Zhang, X. R., Wang, H. Y., & Yang, L. (2021). Preparation and performance analysis of Pt-IPMC for driving bionic tulip. Journal of Advanced Dielectrics, 11, 215017.

    Article  Google Scholar 

  36. Bian, K., Xiong, K., Liu, G., Chen, Q., & Wang, B. (2011). Preparation and dynamic displacement testing of ionic polymer metal composites with platinum as electrodes. Acta Materiae Compositae Sinica, 28, 115–120.

    Google Scholar 

  37. Tian, A. F., Sun, Y., Wang, X. X., Li, J. H., Zhang, X. R., & Wang, H. Y (2021). Effects of surface roughening method on the performance of ionic polymer metal composition. 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, Australia, pp, 1-4.

  38. Yang, L., Zhang, D. S., Zhang, X. N., Tian, A. F., & Ding, Y. F. (2020). Surface roughening of Nafion membranes using different route planning for IPMCs. International Journal of Smart & Nano Materials, 11, 117–128.

    Article  Google Scholar 

  39. Yang, L., Zhang, D. S., Zhang, X. N., & Tian, A. F. (2021). Performance analysis of IPMC electrode based on the densest packing principle. Journal of Materials Research, 36, 1295–1305.

    Article  Google Scholar 

  40. Chattaraj, R., Khan, S., Bhattacharya, S., Bepari, B., Chatterjee, D., & Bhaumik, S. (2016). Development of two jaw compliant gripper based on hyper-redundant approximation of IPMC actuators. Sensors and Actuators, A: Physical, 251, 207–218.

    Article  Google Scholar 

  41. Wang, H. Y., Tian, A. F., Hui, X., Li, J. H., Liu, K., & Zou, Y (2021). Research on motion control of bionic mimosas based on IPMC driving. 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, Australia, pp, 1-4.

  42. Shi, L., & Guo, S. (2016). Development and evaluation of a Venus flytrap-inspired microrobot. Microsystem Technologies, 22, 1949–1958.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial assistance from the Key Laboratory Project of Expressway Construction Machinery of Shaanxi Province, China (300102259510) and the Key Research and Development Program of Shaanxi Province, China (2018ZDXM-GY-088) and Analysis and compensation friction error of inclined installation feed system for NC machine tools, China (17JK0509) and Study on mechanism and suppression strategy of friction error for CNC machine tools, China (2017JM5042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aifen Tian.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tian, A., Sun, Y. et al. The Development of a Venus Flytrap Inspired Soft Robot Driven by IPMC. J Bionic Eng 20, 406–415 (2023). https://doi.org/10.1007/s42235-022-00250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00250-9

Keywords

Navigation