Skip to main content
Log in

Decanting and mixing of supernatant human blood plasma on centrifugal microfluidic platform

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This study presents a compact disk (CD) microfluidic platform for separating human blood plasma from a whole blood sample and then mixing the plasma with a suitable reagent for further analysis purposes. It is shown that the volume of plasma decanted into the plasma reservoir can be precisely controlled through an appropriate control of the disk rotation speed. For example, 0.5 μL of plasma can be deposited in the plasma reservoir by rotating the disk at a speed of 2,600 rpm for 5 s. The performance of three microfluidic CD platforms incorporating square-wave mixing channels with different corner shapes is evaluated both numerically and experimentally. The results show that given the use of a rectangular corner feature and a CD rotation speed of 3,400 rpm, a mixing efficiency of more than 97 % can be obtained within 5 s. The practical feasibility of the proposed platform is demonstrated by performing prothrombin time (PT) tests using whole blood samples acquired from 20 healthy male donors. It is shown that the mean time required to complete the entire PT test (including separation, decanting, mixing and coagulation) is less than 4 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn CH, Choi JW, Beaucage G, Nevin JH, Lee JB, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92(1):154–173

    Article  Google Scholar 

  • Badr IHA, Johnson RD, Madou MJ, Bachas LG (2002) Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform. Anal Chem 74(21):5569–5575

    Article  Google Scholar 

  • Chen X, Cui DF, Liu CC, Li H (2007) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuator B-Chem 130:216–221

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7(1):41–57

    Article  Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee YS, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573

    Article  Google Scholar 

  • Ducree J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17(7):S103–S115

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2005) Patterning of flow and mixing in rotating radial microchannels. Microfluid Nanofluid 2:97–105

    Article  Google Scholar 

  • Ducrée J, Brenner T, Haeberle S, Glatzel T, Zengerle R (2006) Multilamination of flows in planar networks of rotating microchannels. Microfluid Nanofluid 2:78–84

    Article  Google Scholar 

  • Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 72(9):330a–335a

    Article  Google Scholar 

  • Fung YC (1973) Stochastic flow in capillary blood vessels. Microvasc Res 5(1):34–48

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, Kim J, Kim H, Madou M, Cho YK (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773

    Article  Google Scholar 

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  Google Scholar 

  • Haeberle S, Brenner T, Zengerle R, Ducr´ee J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6:776–781

    Article  Google Scholar 

  • Hossian S, Ansari MA, Kim KY (2009) Evaluation of the mixing performance of three passive micromixers. Chem Eng J 150:492–501

    Article  Google Scholar 

  • Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  Google Scholar 

  • Huang CT, Li PN, Pai CY, Leu TS, Jen CP (2010) Design and simulation of a microfluidic blood-plasma separation chip using microchannel structures. Sep Sci Technol 45:42–49

    Article  Google Scholar 

  • Inglis DW, Riehn R, Sturm JC, Austin RH (2006) Microfluidic high gradient magnetic cell separation. J Appl Phys 99:08K101

    Article  Google Scholar 

  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010) Hydrodynamic blood plasma separation in microfluidic channels. Microfluid Nanofluid 8:105–114

    Article  Google Scholar 

  • Kong MCR, Salin ED (2012) Micromixing by pneumatic agitation on continually rotating centrifugal microfluidic platforms. Microfluid Nanofluid 13:519–525

    Article  Google Scholar 

  • Kuo JN, Jiang LR (2014) Design optimization of micromixer with square-wave microchannel on compact disk microfluidic platform. Microsyst Technol 20(1):91–99

    Article  MathSciNet  Google Scholar 

  • Kuo JN, Li BS (2014) Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevices 16:549–558

    Article  MathSciNet  Google Scholar 

  • La M, Park SJ, Kim HW, Park JJ, Ahn KT, Ryew SM, Kim DS (2013) A centrifugal force-based serpentine micromixer (CSM) on a plastic lab-on-a-disk for biochemical assays. Microfluid Nanofluid 15:87–98

    Article  Google Scholar 

  • Li C, Dong X, Qin J, Lin B (2009) Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device. Anal Chim Acta 640:93–99

    Article  Google Scholar 

  • Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469

    Article  Google Scholar 

  • Lu C, Xie Y, Yang Y, Cheng MMC, Koh CG, Bai Y, Lee LJ (2007) New valve and bonding designs for microfluidic biochips containing proteins. Anal Chem 79:994–1001

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Ann Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • McDonald JC, Chabinyc ML, Metallo S, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices in poly (dimethylsiloxane) using solid-object printing. Anal Chem 74:1537–1545

    Article  Google Scholar 

  • Nguyen NT, Wu Z (2005) Micromixers-a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  • Petersson F, Nilsson A, Jönsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221

    Article  Google Scholar 

  • Shih CH, Lu CH, Yuan WL, Chiang WL, Lin CH (2011) Supernatant decanting on a centrifugal platform. Biomicrofluidics 5:013414

    Article  Google Scholar 

  • Shih CH, Lu CH, Wu JH, Lin CH, Wang JM, Lin CY (2012) Prothrombin time tests on a microfluidic disc analyzer. Sens Actuator B-Chem 161:1184–1190

    Article  Google Scholar 

  • Shim JS, Browne AW, Ahn CH (2010) An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer. Biomed Microdevices 12:949–957

    Article  Google Scholar 

  • Smistrup K, Hansen O, Bruus H, Hansen MF (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets-experiments and simulations. J Magn Magn Mater 293:597–604

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315

    Article  Google Scholar 

  • Steigert J, Brenner T, Grumann M, Riegger L, Lutz S, Zengerle R, Ducree J (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdevices 9:675–679

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Van Delinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771

    Article  Google Scholar 

  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Review Article Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  Google Scholar 

  • Yang SY, Lin JL, Lee GB (2009) A vortex-type micromixer utilizing pneumatically driven membranes. J Micromech Microeng 19(3):035020

    Article  MathSciNet  Google Scholar 

  • Zhang J, Guo Q, Liu M, Yang J (2008) A lab-on-CD prototype for high-speed blood separation. J Micromech Microeng 18:125025

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant No. NSC 101-2221-E-150-036. In addition, the access provided to the fabrication equipment used in the present study by the Common Lab for Micro/Nano Science and Technology of National Formosa University is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Nan Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, JN., Chen, XF. Decanting and mixing of supernatant human blood plasma on centrifugal microfluidic platform. Microsyst Technol 22, 861–869 (2016). https://doi.org/10.1007/s00542-015-2458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2458-y

Keywords

Navigation