Skip to main content
Log in

Design optimization of micromixer with square-wave microchannel on compact disk microfluidic platform

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a passive micromixer on a compact disk (CD) microfluidic platform that performs plasma mixing function. The driving force of CD microfluidic platform including, the centrifugal force due to the system rotation, the Coriolis force as a function of the rotation angular frequency and velocity of liquid. Numerical simulations are performed to investigate the flow characteristics and mixing performance of three CD microfluidic mixers with square-wave, curved and zig-zag microchannels, respectively. Of the three microchannels, the square-wave microchannel is found to yield the best mixing performance, and is therefore selected for design optimization. Four CD microfluidic micromixers incorporating square-wave PDMS microchannels with different widths in the x- and y-directions are fabricated using conventional photolithography techniques. The mixing performance of the four microchannels is investigated both numerically and experimentally. The results show that given an appropriate specification of the microchannel geometry and a CD rotation speed of 2,000 rpm, a mixing efficiency of more than 93 % can be obtained within 5 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersson P, Jesson G, Kylberg G, Ekstrand G, Thorsén G (2007) Parallel nanoliter microfluidic analysis system. Anal Chem 79(11):4022–4030

    Article  Google Scholar 

  • Ansari MA, Kim KY (2007) Shape optimization of a micromixer with staggered herringbone groove. Chem Eng Sci 62:6687–6695

    Article  Google Scholar 

  • Ansari MA, Kim KY (2009) Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem Eng J 146:439–448

    Article  Google Scholar 

  • Aref H (1984) Stirring by chaotic advection. J Fluid Mech 143:1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Badr IHA, Johnson RD, Madou MJ, Bachas LG (2002) Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform. Anal Chem 74(21):5569–5575

    Article  Google Scholar 

  • Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60

    Article  Google Scholar 

  • Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36:213–215

    Article  Google Scholar 

  • Chen CK, Cho CC (2007) Electrokinetically driven flow mixing in microchannels with wavy surface. J Colloid Interf Sci 312:470–480

    Article  Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee YS, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2005) Patterning of flow and mixing in rotating radial microchannels. Microfluid Nanofluid 2:97–105

    Article  Google Scholar 

  • Ducrée J, Brenner T, Haeberle S, Glatzel T, Zengerle R (2006) Multilamination of flows in planar networks of rotating microchannels. Microfluid Nanofluid 2:78–84

    Article  Google Scholar 

  • Duffy DC, Gills HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabicated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678

    Article  Google Scholar 

  • Ehlers S, Elgeti K, Menzel T, Wiessmeier G (2000) Mixing in the offstream of a microchannel system. Chem Eng Process 39(4):291–298

    Article  Google Scholar 

  • Erbacher C, Bessoth FG, Busch M, Verpoorte E, Manz A (1999) Towards integrated continuous-flow chemical reactors. Mikrochim Acta 131:19–24

    Article  Google Scholar 

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565

    Article  Google Scholar 

  • Hossian S, Ansari MA, Kim KY (2009) Evaluation of the mixing performance of three passive micromixers. Chem Eng J 150:492–501

    Article  Google Scholar 

  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010) Hydrodynamic blood plasma separation in microfluidic channels. Microfluid Nanofluid 8:105–114

    Article  Google Scholar 

  • Liu M, Nicholson JK, Parkinson JA, Lindon JC (1997) Measurement of biomolecular diffusion coefficients in blood plasma using two-dimensional 1H–1H diffusion-edited total-correlation NMR spectroscopy. Anal Chem 69:1504–1509

    Article  Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197

    Article  Google Scholar 

  • Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469

    Article  Google Scholar 

  • McDonald JC, Chabinyc ML, Metallo S, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal Chem 74:1537–1545

    Article  Google Scholar 

  • Nguyen NT, Wu Z (2005) Micromixers-a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  • Noroozi Z, Kido H, Peytavi R, Nakajima-Sasaki R, Jasinskas A, Micic M, Felgner PL, Madou MJ (2011) A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics. Rev Sci Instrum 82:064303

    Article  Google Scholar 

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Article  Google Scholar 

  • Steigert J, Grumann M, Dube M, Streule W, Riegger L, Brenner T, Koltay P, Mittmann K, Zengerle R, Ducree J (2006) Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics. Sens Actuators, A 130:228–233

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic Mixer for Microchannels. Science 295:647–651

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76(12):3373–3386

    Article  Google Scholar 

  • Voldman J, Gary ML, Schimdt MA (2000) An integrated liquid mixer/valve. J Microelectromech Syst 9(3):295–302

    Article  Google Scholar 

  • Yang JT, Lin KW (2006) Mixing and separation of two-fluid flow in a micro planner serpentine channel. J Micromech Microeng 16:2439–2448

    Article  Google Scholar 

  • Yang SY, Lin JL, Lee GB (2009) A vortex-type micromixer utilizing pneumatically driven membranes. J Micromech Microeng 19(3):035020

    Article  MathSciNet  Google Scholar 

  • Zhang J, Guo Q, Liu M, Yang J (2008) A lab-on-CD prototype for high-speed blood separation. J Micromech Microeng 18:125025

    Article  Google Scholar 

  • Zoval JV, Madou MJ (2004) Centrifuge-based fluidic platforms. Proc IEEE 92(1):140–153

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant No. NSC 101-2221-E-150-036. In addition, the access provided to fabrication equipment by the Common Lab for Micro/Nano Science and Technology of National Formosa University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Nan Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, JN., Jiang, LR. Design optimization of micromixer with square-wave microchannel on compact disk microfluidic platform. Microsyst Technol 20, 91–99 (2014). https://doi.org/10.1007/s00542-013-1769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1769-0

Keywords

Navigation