Skip to main content
Log in

Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The use of thin films as sensing elements for microsensor applications has been shown very attractive due to their low-cost fabrication, potential for integration with standard CMOS technologies and possibility of deposition on different substrate types. In particular, piezoresistive sensors based on thin films have been commonly developed because can be easily implemented using microfabrication processes and present the best relation between sensitivity and system complexity, which showing great advantages in term of device integration. In our previous works (Fraga et al. 2010, 2011a), we studied undoped and nitrogen-doped PECVD a-SiC thin films as alternative materials to replace the silicon piezoresistors in strain and pressure sensors for harsh environments. Here, we focused our attention on the piezoresistive properties of sputtered silicon carbide (SiC), diamond-like carbon (DLC) and titanium dioxide (TiO2) thin films. These materials were evaluated in terms of sensitivity or gauge factor and of the influence of the temperature on this sensitivity, allowing a preliminary analysis of the applicability of these thin films in high temperature piezoresistive sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arshak A, Arshak K, Morris D, Korostynska O, Jafer E (2005) Investigation of TiO2 thick film capacitors for use as strain gauge sensors. Sens Actuators A 122:242–249. doi:10.1016/j.sna.2005.06.004

    Article  Google Scholar 

  • Arshak K, Morris D, Arshak A, Korostynska O (2006) Development of high sensitivity oxide based strain gauges and pressure sensors. J Mater Sci Mater Electron 17:767–778. doi:10.1007/s10854-006-0013-4

    Article  Google Scholar 

  • Arshak K, Morris D, Arshak A, Korostynska O, Kaneswaran K (2007) Development of oxide thick film capacitors for a real time pressure monitoring system. Mater Sci Eng C 27:1406–1410. doi:10.1016/j.msec.2006.06.003

    Article  Google Scholar 

  • Aslam M, Taher I, Masood A, Tamor MA, Potter TJ (1992) Piezoresistivity in vapor-deposited diamond films. Appl Phys Lett 60:2923–2925. doi:10.1063/1.106821

    Article  Google Scholar 

  • Atwell AR, Okojie RS, Kornegay KT, Roberson SL, Beliveau A (2003) Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sens Actuators A Phys 104:11–18. doi:10.1016/S0924-4247(02)00436-3

    Article  Google Scholar 

  • Chen J, Zhang J, Xian Y, Ying X, Liu M, Jin L (2005) Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research. Water Res 39:1340–1346. doi:10.1016/j.watres.2004.12.045

    Article  Google Scholar 

  • Dighavkar C, Patil A, Patil S, Borse R (2010) Al-doped TiO2 thick film resistors as H2S gas sensor. Sens Transducers J 9:39–47

    Google Scholar 

  • Eickhoff M, Möller M, Kroetz G, Stutzmann M (2004) Piezoresistive properties of single crystalline, polycrystalline and nanocrystalline n-type 3C-SiC. J Appl Phys 96:2872–2877. doi:10.1063/1.1775052

    Article  Google Scholar 

  • Fraga MA (2011) Comparison between the piezoresistive properties of a-SiC films obtained by PECVD and magnetron sputtering. Mater Sci Forum 679–680:217–220. doi:10.4028/www.scientific.net/MSF.679-680.217

    Article  Google Scholar 

  • Fraga MA, Furlan H, Massi M, Oliveira IC (2010) Effect of nitrogen doping on piezoresistive properties of a-SixCy thin film strain gauges. Microsyst Technol 16:925–930. doi:10.1007/s00542-010-1033-9

    Article  Google Scholar 

  • Fraga MA, Massi M, Furlan H, Oliveira IC, Rasia LA, Mateus CFR (2011a) Preliminary evaluation of the influence of the temperature on the performance of a piezoresistive pressure sensor based on a-SiC film. Microsyst Technol 17:477–480. doi:10.1007/s00542-011-1244-8

    Article  Google Scholar 

  • Fraga MA, Furlan H, Pessoa RS (2011b) Comparison among performance of strain sensors based on different semiconductor thin films. Proc SPIE. doi:10.1117/12.886624

    Google Scholar 

  • George T, Son KA, Powers RA, Del Castillo LY, Okojie R (2005) Harsh environment microtechnologies for NASA and terrestrial applications. Proc IEEE Sens. doi:10.1109/ICSENS.2005.1597934

    Google Scholar 

  • Gurbuz Y, Esame O, Tekin I, Kang WP, Davidson JL (2005) Diamond semiconductor technology for RF device applications. Solid State Electron 49:1055–1070. doi:10.1016/j.sse.2005.04.005

    Article  Google Scholar 

  • Hollander LE, Diesel TJ, Vick GL (1960) Piezoresistivity in the oxide semiconductor rutile (TiO2). Phys Rev 117:1469–1472. doi:10.1103/PhysRev.117.1469

    Article  Google Scholar 

  • Krauss AR, Auciello O, Gruen DM, Jayatissa A, Sumant A, Tucek J, Mancini DC, Moldovan N, Erdemir A, Ersoy D, Gardos MN, Busmann HG, Meyer EM, Ding MQ (2001) Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diam Relat Mater 10:1952–1961. doi:10.1016/S0925-9635(01)00385-5

    Article  Google Scholar 

  • Malhaire C, Barbier D (2003) Design of a polysilicon-on-insulator pressure sensor with original polysilicon layout for harsh environment. Thin Solid Films 427:362–366. doi:10.1016/S0040-6090(02)01234-8

    Article  Google Scholar 

  • Mehregany M, Zorman CA, Rajan N, Chien Hung Wu (1998) Silicon carbide MEMS for harsh environments. Proc IEEE 86:1594–1609. doi:10.1109/5.704265

    Article  Google Scholar 

  • Meškinis Š, Gudaitis R, Kopustinskas V, Tamulevičius S (2008) Electrical and piezoresistive properties of ion beam deposited DLC films. Appl Surf Sci 254:5252–5256. doi:10.1016/j.apsusc.2008.02.037

    Article  Google Scholar 

  • Meškinis Š, Gudaitis R, Kopustinskas V, Tamulevičius S, Šlapikas K (2010) Piezoresistive, optical and electrical properties of diamond like carbon and carbon nitride films. Diam Relat Mater 19:1249–1253. doi:10.1016/j.diamond.2010.06.008

    Article  Google Scholar 

  • Ned AA, Okojie RS, Kurtz AD (1998) 6H-SiC pressure sensor operation at 600°C. In: Fourth international high temperature electronics conference. doi:10.1109/HITEC.1998.676799

  • Okojie RS, Atwell AR, Kornegay KT, Roberson SL, Beliveau A (2002) Design considerations for bulk micromachined 6H-SiC high-G piezoresistive accelerometers. In: The fifteenth IEEE international conference on micro electro mechanical systems 1:618–622. doi:10.1109/MEMSYS.2002.984347

  • Okojie RS, Lukco D, Blaha C, Nguyen V, Savrun E (2010) Zero offset drift suppression in SiC pressure sensors at 600°C. IEEE Sens. doi:10.1109/ICSENS.2010.5690714

    Google Scholar 

  • Peiner E, Tibrewala A, Bandorf R, Biehl S, Lüthje H, Doering L (2006) Micro force sensor with piezoresistive amorphous carbon strain gauge. Sens Actuators A 130–131:75–82. doi:10.1016/j.sna.2005.11.059

    Google Scholar 

  • Peiner E, Tibrewala A, Bandorf R, Lüthje H, Doering L, Limmer W (2007) Diamond-like carbon for MEMS. J Micromech Microeng 17:S83. doi:10.1088/0960-1317/17/7/S04

    Article  Google Scholar 

  • Reichert W, Obermeier E, Stoemenos J (1997) β-SiC films on SOI substrates for high temperature applications. Diam Relat Mater 6:1448–1450. doi:10.1016/S0925-9635(97)00078-2

    Article  Google Scholar 

  • Sarro PM (2000) Silicon carbide as a new MEMS technology. Sens Actuators A Phys 82:210–218. doi:10.1016/S0924-4247(99)00335-0

    Article  Google Scholar 

  • Schultes G, Frey P, Goettel D, Freitag-Weber O (2006) Strain sensitivity of nickel-containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by r.f. sputtering using substrate bias conditions. Diam Relat Mater 15:80–89. doi:10.1016/j.diamond.2005.07.005

    Article  Google Scholar 

  • Stamate MD (2003) On the dielectric properties of dc magnetron TiO2 thin films. Appl Surf Sci 218:318–323. doi:10.1016/S0169-4332(03)00624-X

    Article  Google Scholar 

  • Takeno T, Miki H, Sugawara T, Hoshi Y, Takagi T (2008) A DLC/W-DLC multilayered structure for strain sensing applications. Diam Relat Mater 17:713–716. doi:10.1016/j.diamond.2007.10.005

    Article  Google Scholar 

  • Tan W, Chen J, Zhou X, Zhang J, Lin Y, Li X, Xiao X (2009) Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell. J Solid State Electrochem 13:651–656. doi:10.1007/s10008-008-0605-4

    Article  Google Scholar 

  • Tibrewala A, Peiner E, Bandorf R, Biehl S, Lüthje H (2007) Longitudinal and transversal piezoresistive effect in hydrogenated amorphous carbon films. Thin Solid Films 515:8028–8033. doi:10.1016/j.tsf.2007.03.046

    Article  Google Scholar 

  • Wang R, Ko WH, Young DJ (2005) Silicon–carbide MESFET-based 400°C MEMS sensing and data telemetry. IEEE Sens J 5:1389–1394. doi:10.1109/JSEN.2005.858927

    Article  Google Scholar 

  • Wu CH, Stefanescu S, Kuo HI, Zorman CA, Mehregany M (2001) Fabrication and Testing of Single Crystalline 3C-SiC Piezoresistive Pressure Sensors. In: Proceedings of the 11th international conference on solid-state sensors and actuators

  • Yeung KW, Ong CW (2007) Micro-pressure sensors made of indium tin oxide thin films. Sens Actuators A Phys 137:1–5. doi:10.1016/j.sna.2007.01.012

    Article  Google Scholar 

  • Zhang M, Lin G, Dong C, Wen L (2007) Amorphous TiO2 films with high refractive index deposited by pulsed bias arc ion plating. Surf Coat Technol 201:7252–7258. doi:10.1016/j.surfcoat.2007.01.043

    Article  Google Scholar 

Download references

Acknowledgments

Research partially performed at Brazilian National Synchrotron Light Laboratory (LNLS/MCT). The financial support of CNPq, FINEP, CAPES, FAPESP and FAPERGS are strongly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga, M.A., Furlan, H., Pessoa, R.S. et al. Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst Technol 18, 1027–1033 (2012). https://doi.org/10.1007/s00542-012-1435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1435-y

Keywords

Navigation