Skip to main content

Advertisement

Log in

Updated review on the use of neuromuscular blockade during intraoperative motor-evoked potential monitoring in the modern anesthesia era

  • Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Transcranial electrical stimulation motor-evoked potentials (Tc-MEP) monitoring is a common practice in neurosurgery to prevent postoperative neurological damage. However, the use of neuromuscular blocking agents (NMBAs) during Tc-MEP monitoring is a subject of controversy. In addition, the effectiveness of sugammadex, a selective reversal agent, in the context of Tc-MEP monitoring requires further investigation. This review aimed to clarify the considerations involved in achieving optimal Tc-MEP monitoring while ensuring patient safety. Preoperative patient selection, comorbidity assessment, motor power evaluation, and the nature of the planned surgery are critical factors. Accurate paralysis assessment, continuous NMBA infusion, and post-tetanic stimulation techniques are essential for achieving optimal partial NMB. The decision to administer an NMB during Tc-MEP monitoring necessitates a careful evaluation of the balance between accuracy and potential complications. This review emphasizes the challenges associated with NMB administration during Tc-MEP monitoring and highlights the need for personalized patient assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Merton P, Morton H. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:227.

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi M, Schram J, Cedzich C. Recording of myogenic motor evoked potential (mMEP) under general anesthesia. In: Schramm J, Moller AR, editors. Intraoperative neurophysiological monitoring. Berlin: Springer; 1991. p. 72–87.

    Chapter  Google Scholar 

  3. mThuet ED, Winscher JC, Padberg AM, Bridwell KH, Lenke LG, Dobbs MB, Schootman M, Luhmann SJ. Validity and reliability of intraoperative monitoring in pediatric spinal deformity surgery: a 23-year experience of 3436 surgical cases. Spine. 2010;35:1880–6.

    Article  Google Scholar 

  4. Pastorelli F, Di Silvestre M, Plasmati R, Michelucci R, Greggi T, Morigi A, Bacchin MR, Bonarelli S, Cioni A, Vommaro F, Fini N, Lolli F, Parisini P. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20:105–14.

    Article  PubMed Central  Google Scholar 

  5. Malcharek MJ, Kulpok A, Deletis V, Ulkatan S, Sablotzki A, Hennig G, Gille J, Pilge S, Schneider G. Intraoperative multimodal evoked potential monitoring during carotid endarterectomy: a retrospective study of 264 patients. Anesth Analg. 2015;120:1352–60.

    Article  PubMed  Google Scholar 

  6. Malcharek M, Ulkatan S, Marinò V, Geyer M, Lladó-Carbó E, Perez-Fajardo G, Arranz-Arranz B, Climent J, Aloj F, Franco E, Chiacchiari L, Kulpok A, Sablotzki A, Hennig G, Deletis V. Intraoperative monitoring of carotid endarterectomy by transcranial motor evoked potential: a multicenter study of 600 patients. Clinical Neurophysiol. 2013;124:1025–30.

    Article  CAS  Google Scholar 

  7. Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, van Eps RGS, Schurink GWH. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006;43:239–46.

    Article  PubMed  Google Scholar 

  8. Kawanishi Y, Munakata H, Matsumori M, Tanaka H, Yamashita T, Nakagiri K, Okada K, Okita Y. Usefulness of transcranial motor evoked potentials during thoracoabdominal aortic surgery. Ann Thorac Surg. 2007;83:456–61.

    Article  PubMed  Google Scholar 

  9. Tanaka Y, Kawaguchi M, Noguchi Y, Yoshitani K, Kawamata M, Masui K, Nakayama T, Yamada Y. Systematic review of motor evoked potentials monitoring during thoracic and thoracoabdominal aortic aneurysm open repair surgery: a diagnostic meta-analysis. J Anesth. 2016;30:1037–50.

    Article  PubMed  Google Scholar 

  10. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, Boezeman EH. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999;88:22–7.

    Article  PubMed  Google Scholar 

  11. Kawaguchi M, Iida H, Tanaka S, Fukuoka N, Hayashi H, Izumi S, Yoshitani K, Kakinohana M, MEP Monitoring guideline working group of the safety committee of the japanese society of anesthesiologists (JSA). A practical guide for anesthetic management during intraoperative motor evoked potential monitoring. J Anesth. 2020;34:5–28.

    Article  PubMed  Google Scholar 

  12. Legatt AD, Emerson RG, Epstein CM, MacDonald DB, Deletis V, Bravo RJ, López JR. ACNS guideline: transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2016;33:42–50.

    Article  PubMed  Google Scholar 

  13. Jameson LC. Transcranial motor-evoked potentials. In: Koht A, Sloan T, Toleikis J, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. Cham: Springer; 2017. p. 19–33.

    Chapter  Google Scholar 

  14. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.

    Article  PubMed  Google Scholar 

  15. Thilen SR, Weigel WA, Todd MM, Dutton RP, Lien CA, Grant SA, Szokol JW, Eriksson LI, Yaster M, Grant MD, Agarkar M, Marbella AM, Blanck JF, Domino KB. 2023 American Society of Anesthesiologists practice guidelines for monitoring and antagonism of neuromuscular blockade: A report by the American Society of Anesthesiologists task force on neuromuscular blockade. Anesthesiology. 2023;138:13–41.

    Article  PubMed  Google Scholar 

  16. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75:584–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, Sakaki T, Furuya H. The effects of the neuro- muscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106:930–4.

    Article  CAS  PubMed  Google Scholar 

  18. Naguib M, Brull SJ, Kopman AF, Hunter JM, Fülesdi B, Arkes HR, Elstein A, Todd MM, Johnson KB. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg. 2018;127:71–80.

    Article  PubMed  Google Scholar 

  19. Domenech G, Kampel MA, García Guzzo ME, Novas DS, Terrasa SA, Fornari GG. Usefulness of intra-operative neuromuscular blockade monitoring and reversal agents for postoperative residual neuromuscular blockade: a retrospective observational study. BMC Anesthesiol. 2019;19:143.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trifa M, Krishna S, D’Mello A, Hakim M, Tobias JD. Sugammadex to reverse neuromuscular blockade and provide optimal conditions for motor-evoked potential monitoring. Saudi J Anaesth. 2017;11:219–21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayashi H, Bebawy JF, Koht A, Hemmer LB. Cautionary findings for motor evoked potential monitoring in intracranial aneurysm surgery after a single administration of rocuronium to facilitate tracheal intubation. J Clin Monit Comput. 2021;35:903–11.

    Article  PubMed  Google Scholar 

  22. Hayashi H, Yamada M, Okuyama K, Takatani T, Shigematsu H, Tanaka Y, Kawaguchi M. Retrospective observational study of the effects of residual neuromuscular blockade and sugammadex on motor-evoked potential monitoring during spine surgery in Japan. Medicine (Baltimore). 2022;101: e30841.

    Article  CAS  PubMed  Google Scholar 

  23. Venkatraghavan L, Royan N, Boyle SL, Dinsmore M, Lu N, Cushman K, Massicotte EM, Prabhu A. Effect of reversal of residual neuromuscular blockade on the amplitude of motor evoked potentials: a randomized controlled crossover study comparing sugammadex and placebo. Neurol Sci. 2022;43:615–23.

    Article  PubMed  Google Scholar 

  24. Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus. 2009;27:E7.

    Article  PubMed  Google Scholar 

  25. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6.

    Article  PubMed  Google Scholar 

  26. Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763.

    PubMed  Google Scholar 

  27. Geldner G, Niskanen M, Laurila P, Mizikov V, Hübler M, Beck G, Rietbergen H, Nicolayenko E. A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia. 2012;67:991–8.

    Article  CAS  PubMed  Google Scholar 

  28. Erhan E, Ugur G, Alper I, Gunusen I, Ozyar B. Tracheal intubation without muscle relaxants: remifentanil or alfentanil in combination with propofol. Eur J Anaesthesiol. 2003;20:37–43.

    Article  CAS  PubMed  Google Scholar 

  29. Mencke T, Echternach M, Kleinschmidt S, Lux P, Barth V, Plinkert PK, Fuchs-Buder T. Laryngeal morbidity and quality of tracheal intubationa randomized controlled trial. Anesthesiology. 2003;98:1049–56.

    Article  CAS  PubMed  Google Scholar 

  30. Renew JR, Naguib M, Brull S. Clinical use of neuromuscular blocking agents in anesthesia. Waltham: UpToDate; 2019.

  31. Batistaki C, Papadopoulos K, Kalimeris KA, Soultanis K, Alevizou A, Pantazi M, Kostopanagiotou GG. Sugammadex to reverse rocuronium and facilitate intraoperative motor evoked potentials monitoring during spinal surgery. Anaesth Intensive Care. 2012;40:1073–4.

    CAS  PubMed  Google Scholar 

  32. Liu H, Jian M, Wang C, Nie L, Liang F, Liu K, Zhang K, Qiao H, Han R. Effect of sugammadex during transcranial electrical motor evoked potentials monitoring in spinal surgery: a randomized controlled trial. J Neurosurg Anesthesiol. 2023;35:224–31.

    Article  CAS  PubMed  Google Scholar 

  33. Alkhatib MZ, Elarjani T, Alkhalefah AM, Farrash F. Sudden onset temporary loss of SSEP and MEP as a result to positional neck changes in an intradural extramedullary cervical spine schwannoma: a case report. Interdiscip Neurosurg. 2020;21:100717.

    Article  Google Scholar 

  34. Graham RB, Cotton M, Koht A, Koski TR. Loss of intraoperative neurological monitoring signals during flexed prone positioning on a hinged open frame during surgery for kyphoscoliosis correction: case report. J Neurosurg Spine. 2018;29:339–43.

    Article  PubMed  Google Scholar 

  35. Daehee Suh MD, Cho J, Yoo B, Lee S. The efficacy of sugammadex in the monitoring of motor evoked potentials for spine surgery: a 10 cases review. Sch J Med Case Rep. 2020;8:774–7.

    Article  Google Scholar 

  36. Schaller SJ, Fink H. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review. Core Evid. 2013;8:57–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Llauradó S, Sabaté A, Ferreres E, Camprubí I, Cabrera A. Sugammadex ideal body weight dose adjusted by level of neuromuscular blockade in laparoscopic bariatric surgery. Anesthesiology. 2012;117:93–8.

    Article  PubMed  Google Scholar 

  38. Van Lancker P, Dillemans B, Bogaert T, Mulier JP, De Kock M, Haspeslagh M. Ideal versus corrected body weight for dosage of sugammadex in morbidly obese patients. Anaesthesia. 2011;66:721–5.

    Article  PubMed  Google Scholar 

  39. Cammu G, de Kam PJ, De Graeve K, van den Heuvel M, Suy K, Morias K, Foubert L, Grobara P, Peeters P. Repeat dosing of rocuronium 1.2 mg kg-1 after reversal of neuromuscular block by sugammadex 4.0 mg kg-1 in anaesthetized healthy volunteers: a modelling-based pilot study. Br J Anaesth. 2010;105:487–92.

    Article  CAS  PubMed  Google Scholar 

  40. Iwasaki H, Sasakawa T, Takahoko K, Takagi S, Nakatsuka H, Suzuki T, Iwasaki H. A case series of re-establishment of neuromuscular block with rocuronium after sugammadex reversal. J Anesth. 2016;30:534–7.

    Article  PubMed  Google Scholar 

  41. Lang EW, Beutler AS, Chesnut RM, Patel PM, Kennelly NA, Kalkman CJ, Drummond JC, Garfin SR. Myogenic motor-evoked potential monitoring using partial neuromuscular blockade in surgery of the spine. Spine. 1996;21:1676–86.

    Article  CAS  PubMed  Google Scholar 

  42. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19:430–43.

    Article  PubMed  Google Scholar 

  43. Minahan RE, Riley LH III, Lukaczyk T, Cohen DB, Kostuik JP. The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine. 2000;25:2526–30.

    Article  CAS  PubMed  Google Scholar 

  44. Mendiratta A, Emerson RG. Neurophysiologic intraoperative monitoring of scoliosis surgery. J Clin Neurophysiol. 2009;26:62–9.

    Article  PubMed  Google Scholar 

  45. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: Description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88:457–70.

    Article  CAS  PubMed  Google Scholar 

  46. Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, Burke DJ. Variability of motor-evoked potentials recorded during nitrous oxide anesthesia from the tibialis anterior muscle after transcranial electrical stimulation. Anesth Analgesia. 1996;82:744–9.

    CAS  Google Scholar 

  47. Sloan TB. Anesthesia management and intraoperative electrophysiological monitoring. In: Koht A, Sloan T, Toleikis J, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. Cham: Springer; 2017. p. 317–34.

    Chapter  Google Scholar 

  48. Kothbauer K. Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Neurophysiol Clin. 2007;37:407–14.

    Article  CAS  PubMed  Google Scholar 

  49. Pajewski TN, Arlet V, Phillips LH. Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J. 2007;16:S115–29.

    Article  PubMed  Google Scholar 

  50. MacDonald DB, Janusz M. An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol. 2002;19:43–54.

    Article  PubMed  Google Scholar 

  51. Kim SH, Jin SJ, Karm MH, Moon YJ, Jeong HW, Kim JW, Ha SI, Kim JU. Comparison of false-negative/positive results of intraoperative evoked potential monitoring between no and partial neuromuscular blockade in patients receiving propofol/remifentanil-based anesthesia during cerebral aneurysm clipping surgery: a retrospective analysis of 685 patients. Medicine. 2016;95: e4725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim WH, Lee J, Lee S, Park M, Park S, Seo D, Chung IS. Comparison of motor-evoked potentials monitoring in response to transcranial electrical stimulation in subjects undergoing neurosurgery with partial vs no neuromuscular block. Br J Anaesth. 2013;110:567–76.

    Article  CAS  PubMed  Google Scholar 

  53. Ko MJ, Oh B, Jung JW, Oh DS, Jin SC, Kang E, Kim YH, Kim SH, Kim H. Comparing the effect between continuous infusion and intermittent bolus of rocuronium for intraoperative neurophysiologic monitoring of neurointervention under general anesthesia. Medicine (Baltimore). 2018;97: e13816.

    Article  PubMed  Google Scholar 

  54. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100:4–10.

    Article  PubMed  Google Scholar 

  55. Leslie K, Myles PS, Forbes A, Chan MT. The effect of bispectral index monitoring on long-term survival in the B-aware trial. Anesth Analg. 2010;110:816–22.

    Article  PubMed  Google Scholar 

  56. Short TG, Leslie K, Campbell D, Chan MT, Corcoran T, O’Loughlin E, Frampton C, Myles P. A pilot study for a prospective, randomized, double-blind trial of the influence of anesthetic depth on long-term outcome. Anesth Analg. 2014;118:981–6.

    Article  CAS  PubMed  Google Scholar 

  57. Maurtua MA, Deogaonkar A, Bakri MH, Mascha E, Na J, Foss J, Sessler DI, Lotto M, Ebrahim Z, Schubert A. Dosing of remifentanil to prevent movement during craniotomy in the absence of neuromuscular blockade. J Neurosurg Anesthesiol. 2008;20:221–5.

    Article  PubMed  Google Scholar 

  58. Ohtaki S, Akiyama Y, Kanno A, Noshiro S, Hayase T, Yamakage M, Mikuni N. The influence of depth of anesthesia on motor evoked potential response during awake craniotomy. J Neurosurg. 2017;126:260–5.

    Article  PubMed  Google Scholar 

  59. Nathan N, Tabaraud F, Lacroix F, Mouliès D, Viviand X, Lansade A, Terrier G, Feiss P. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth. 2003;91:493–7.

    Article  CAS  PubMed  Google Scholar 

  60. Sookplung P, Siriussawakul A, Malakouti A, Sharma D, Wang J, Souter MJ, Chesnut RM, Vavilala MS. Vasopressor use and effect on blood pressure after severe adult traumatic brain injury. Neurocrit Care. 2011;15:46–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29.

    Article  PubMed  Google Scholar 

  62. Hemmer LB, Zeeni C, Bebawy JF, Bendok BR, Cotton MA, Shah NB, Gupta DK, Koht A. The incidence of unacceptable movement with motor evoked potentials during craniotomy for aneurysm clipping. World Neurosurg. 2014;81:99–104.

    Article  PubMed  Google Scholar 

  63. Guo L, Gelb AW. The use of motor evoked potential monitoring during cerebral aneurysm surgery to predict pure motor deficits due to subcortical ischemia. Clin Neurophysiol. 2011;122:648–55.

    Article  PubMed  Google Scholar 

  64. Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100:389–99.

    Article  PubMed  Google Scholar 

  65. Szelényi A, Kothbauer K, De Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57:331–8.

    PubMed  Google Scholar 

  66. Quiñones-Hinojosa A, Alam M, Lyon R, Yingling CD, Lawton MT. Transcranial motor evoked potentials during basilar artery aneurysm surgery: technique application for 30 consecutive patients. Neurosurgery. 2004;54:916–24.

    Article  PubMed  Google Scholar 

  67. Liu HY, Xia TJ, Zhu ZZ, Zhao X, Qian Y, Ma ZL, Gu XP. Effect of neuromuscular blockade on transcranial electric motor evoked potentials during surgical correction for idiopathic scoliosis under total intravenous anesthesia. J Clin Monit Comput. 2019;33:471–9.

    Article  PubMed  Google Scholar 

  68. MacDonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347–77.

    Article  PubMed  Google Scholar 

  69. Duma A, Novak K, Schramm W. Tube-in-tube emergency airway management after a bitten endotracheal tube caused by repetitive transcranial electrical stimulation during spinal cord surgery. Anesthesiology. 2009;111:1155–7.

    Article  PubMed  Google Scholar 

  70. Yata S, Ida M, Shimotsuji H, Nakagawa Y, Ueda N, Takatani T, Shigematsu H, Motoyama Y, Nakase H, Kirita T, Kawaguchi M. Bite injuries caused by transcranial electrical stimulation motor-evoked potentials’ monitoring: incidence, associated factors, and clinical course. J Anesth. 2018;32:844–9.

    Article  PubMed  Google Scholar 

  71. Tamkus A, Rice K. The incidence of bite injuries associated with transcranial motor-evoked potential monitoring. Anesth Analg. 2012;115:663–7.

    Article  PubMed  Google Scholar 

  72. Nagle KJ, Emerson RG, Adams DC, Heyer EJ, Roye DP, Schwab FJ, Weidenbaum M, McCormick P, Pile-Spellman J, Stein BM, Farcy JP, Gallo EJ, Dowling KC, Turner CA. Intraoperative monitoring of motor evoked potentials: a review of 116 cases. Neurology. 1996;47:999–1004.

    Article  CAS  PubMed  Google Scholar 

  73. Yang LH, Lin SM, Lee WY, Liu CC. Intraoperative transcranial electrical motor evoked potential monitoring during spinal surgery under intravenous ketamine or etomidate anaesthesia. Acta Neurochir (Wien). 1994;127:191–8.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Hu H, Yan R, Li T, Wang W, Yang W. Effects of rocuronium dosage on intraoperative neurophysiological monitoring in patients undergoing spinal surgery. J Clin Pharm Ther. 2022;47:313–20.

    Article  CAS  PubMed  Google Scholar 

  75. Selner AN, Ivanov AA, Esfahani DR, Bhimani AD, Waseem F, Behbahani M, Edelman G, Stone JL, Slavin KV, Mehta AI. Feasibility of full neuromuscular blockade during transcranial motor evoked potential monitoring of neurosurgical procedures. J Neurosurg Anesthesiol. 2022;34:69–73.

    Article  PubMed  Google Scholar 

  76. Guo L, Li Y, Han R, Gelb AW. The correlation between recordable MEPs and motor function during spinal surgery for resection of thoracic spinal cord tumor. J Neurosurg Anesthesiol. 2018;30:39–43.

    Article  PubMed  Google Scholar 

  77. Guo L, Gelb AW. False negatives, muscle relaxants, and motor-evoked potentials. J Neurosurg Anesthesiol. 2011;23:64.

    Article  PubMed  Google Scholar 

  78. Burke D, Hicks RG, Stephen JP. Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol. 1990;425:283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Szelenyi A, Langer D, Beck J, Raabe A, Flamm ES, Seifert V, Deletis V. Transcranial and direct cortical stimulation for motor evoked potential monitoring in intracerebral aneurysm surgery. Neurophysiol Clin. 2007;37:391–8.

    Article  CAS  PubMed  Google Scholar 

  80. Sekimoto K, Nishikawa K, Ishizeki J, Kubo K, Saito S, Goto F. The effects of volatile anesthetics on intraoperative monitoring of myogenic motor-evoked potentials to transcranial electrical stimulation and on partial neuromuscular blockade during propofol/fentanyl/nitrous oxide anesthesia in humans. J Neurosurg Anes. 2006;18(2):106–11.

    Article  Google Scholar 

  81. Lee S, Jeon YT, Oh TK, Lee J, Choi ES. Predictive factors of unacceptable movement and motor-evoked potentials during intraoperative neurophysiological monitoring in adult patients undergoing brain surgery: a retrospective study. Medicine (Baltimore). 2021;100: e24148.

    Article  PubMed  Google Scholar 

  82. Inghilleri M, Berardelli A, Cruccu G, Priori A, Manfredi M. Motor potentials evoked by paired cortical stimuli. Electroencephalogr Clin Neurophysiol. 1990;77:382–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kalkman CJ, Ubags LH, Been HD, Swaan A, Drummond JC. Improved amplitude of myogenic motor evoked responses after paired transcranial electrical stimulation during sufentanil/nitrous oxide anesthesia. Anesthesiology. 1995;83:270–6.

    Article  CAS  PubMed  Google Scholar 

  84. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    Article  CAS  PubMed  Google Scholar 

  85. Ubags LH, Kalkman CJ, Been HD, Drummond JC. The use of a circumferential cathode improves amplitude of intraoperative electrical transcranial myogenic motor evoked responses. Anesth Analg. 1996;82:1011–4.

    CAS  PubMed  Google Scholar 

  86. Kakimoto M, Kawaguchi M, Yamamoto Y, Inoue S, Horiuchi T, Nakase H, Sakaki T, Furuya H. Tetanic stimulation of the peripheral nerve before transcranial electrical stimulation can enlarge amplitudes of myogenic motor evoked potentials during general anesthesia with neuromuscular blockade. Anesthesiology. 2005;102:733–8.

    Article  PubMed  Google Scholar 

  87. Ridley SA, Hatch DJ. Post-tetanic count and profound neuromuscular blockade with atracurium infusion in paediatric patients. Br J Anaesth. 1988;60:31–5.

    Article  CAS  PubMed  Google Scholar 

  88. Gwinnutt CL, Meakin G. Use of the post-tetanic count to monitor recovery from intense neuromuscular blockade in children. Br J Anaesth. 1988;61:547–50.

    Article  CAS  PubMed  Google Scholar 

  89. Saitoh Y, Narumi Y, Fujii Y. Post-tetanic count and train-of-four responses during neuromuscular block produced by vecuronium and infusion of nicardipine. Br J Anaesth. 1999;83:340–2.

    Article  CAS  PubMed  Google Scholar 

  90. Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. Evaluation of reliability of post-tetanic motor-evoked potential monitoring during spinal surgery under general anesthesia. Spine. 2008;33:E994-1000.

    Article  PubMed  Google Scholar 

  91. Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. The application of tetanic stimulation of the unilateral tibial nerve before transcranial stimulation can augment the amplitudes of myogenic motor-evoked potentials from the muscles in the bilateral upper and lower limbs. Anesth Analg. 2008;107:215–20.

    Article  PubMed  Google Scholar 

  92. Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, Tanaka M, Okuda A, Morimoto Y, Masuda K, Yamamoto Y, Tanaka Y. Post-tetanic transcranial motor evoked potentials augment the amplitude of compound muscle action potentials recorded from innervated and non-innervated muscles. Spine J. 2018;18:740–6.

    Article  PubMed  Google Scholar 

  93. Yamamoto Y, Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Tanaka M, Okuda A, Kawasaki S, Masuda K, Suga Y, Tanaka Y. Tetanic stimulation of the peripheral nerve augments motor evoked potentials by re-exciting spinal anterior horn cells. J Clin Monit Comput. 2022;36:259–70.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SP: performed the literature search, organized the data, and drafted the manuscript. MK who had the idea for the articles responsible for the integrity of the work from conception to the critically revised and final approval of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Masahiko Kawaguchi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoowanakulchai, S., Kawaguchi, M. Updated review on the use of neuromuscular blockade during intraoperative motor-evoked potential monitoring in the modern anesthesia era. J Anesth 38, 114–124 (2024). https://doi.org/10.1007/s00540-023-03265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-023-03265-6

Keywords

Navigation