Skip to main content

Anesthesia Management and Intraoperative Electrophysiological Monitoring

  • Chapter
  • First Online:
Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals

Abstract

The anesthetic agents used to produce general anesthesia and the physiological management have an impact on the ability of intraoperative neurophysiological monitoring to be conducted. Clearly the most challenging circumstances are when monitoring techniques are sensitive to the agents used. This section will discuss the general principles behind the effects of anesthetic agents and the known effects on electrophysiological monitoring. The specific choice of anesthetic agents will depend on the effects of the agents, the monitoring techniques used, and the anesthetic goals desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Key references marked with asterisk.

References

Key references marked with asterisk.

  1. Ting CH, Angel A, Linkens DA. Neuronal network modelling of the effects of anaesthetic agents on somatosensory pathways. Biol Cybern. 2003;88(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  2. Goto T, Nakata Y, Morita S. How does xenon produce anesthesia? A perspective from electrophysiological studies. Int Anesthesiol Clin. 2001;39(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng G, Kendig JJ. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors. Anesthesiology. 2000;93(4):1075–84.

    Article  CAS  PubMed  Google Scholar 

  4. Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR. How does xenon produce anaesthesia? Nature. 1998;396(6709):324.

    Article  CAS  PubMed  Google Scholar 

  5. Flood P, Krasowski MD. Intravenous anesthetics differentially modulate ligand-gated ion channels. Anesthesiology. 2000;92(5):1418–25.

    Article  CAS  PubMed  Google Scholar 

  6. Raines DE, Claycomb RJ, Scheller M, Forman SA. Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels. Anesthesiology. 2001;95(2):470–7.

    Article  CAS  PubMed  Google Scholar 

  7. Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics [see comment]. N Engl J Med. 2003;348(21):2110–24.

    Article  CAS  PubMed  Google Scholar 

  8. Perouansky M, Hemmings HC Jr. Presynaptic actions of general anesthetics. In: Antognini JF, Carstens C, Raines DE, editors. Neural mechanisms of anesthesia. New York: Springer; 2003. p. 345–69.

    Google Scholar 

  9. Hemmings Jr HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26(10):503–10.

    Article  CAS  PubMed  Google Scholar 

  10. *Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80.

    Google Scholar 

  11. Winters WD. Effects of drugs on the electrical activity of the brain: anesthetics. Annu Rev Pharmacol Toxicol. 1976;16:413–26.

    Article  CAS  PubMed  Google Scholar 

  12. Stockard J, Bickford R. The neurophysiology of anesthesia. In: Gordon E, editor. A basis and practice of neuroanesthesia. 2nd ed. New York: Excerpta Medica; 1981. p. 3–50.

    Google Scholar 

  13. *Jäntti V, Sloan T. Anesthesia and intraoperative electroencephalographic monitoring. In: Nuwer M, editor. Intraoperative monitoring of neural function, handbook of clinical neurophysiology. New York: Elsevier; 2008. p. 77–93.

    Google Scholar 

  14. Sharbrough FW, Messick Jr JM, Sundt Jr TM. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4(4):674–83.

    Article  CAS  PubMed  Google Scholar 

  15. Yli-Hankala A. The effect of nitrous oxide on EEG spectral power during halothane and isoflurane anaesthesia. Acta Anaesthesiol Scand. 1990;34(7):579–84.

    Article  CAS  PubMed  Google Scholar 

  16. Jantti V, Yli-Hankala A. Correlation of instantaneous heart rate and EEG suppression during enflurane anaesthesia: synchronous inhibition of heart rate and cortical electrical activity? Electroencephalogr Clin Neurophysiol. 1990;76(5):476–9.

    Article  CAS  PubMed  Google Scholar 

  17. Iijima T, Nakamura Z, Iwao Y, Sankawa H. The epileptogenic properties of the volatile anesthetics sevoflurane and isoflurane in patients with epilepsy [see comment]. Anesth Analg. 2000;91(4):989–95.

    Article  CAS  PubMed  Google Scholar 

  18. Huotari AM, Koskinen M, Suominen K, Alahuhta S, Remes R, Hartikainen KM, et al. Evoked EEG patterns during burst suppression with propofol. Br J Anaesth. 2004;92(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  19. Rampil IJ. Electroencephalogram. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 193–220.

    Google Scholar 

  20. Buhrer M, Mappes A, Lauber R, Stanski DR, Maitre PO. Dexmedetomidine decreases thiopental dose requirement and alters distribution pharmacokinetics. Anesthesiology. 1994;80(6):1216–27.

    Article  CAS  PubMed  Google Scholar 

  21. Kochs E, Scharein E, Mollenberg O, Bromm B, Schulte am Esch J. Analgesic efficacy of low-dose ketamine. Somatosensory-evoked responses in relation to subjective pain ratings. Anesthesiology. 1996;85(2):304–14.

    Article  CAS  PubMed  Google Scholar 

  22. Hirota K. Special cases: ketamine, nitrous oxide and xenon. Best Pract Res Clin Anaesthesiol. 2006;20(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  23. Voss LJ, Sleigh JW, Barnard JP, Kirsch HE. The howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008;107(5):1689–703. Epub 2008/10/22.

    Article  PubMed  Google Scholar 

  24. Pai A, Heining M. Ketamine. Continuing education in anaesthesia. Crit Care Pain. 2007;7(2):59–63.

    Google Scholar 

  25. Sloan T, Jameson LC. Monitoring anesthetic effect. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health professionals. New York: Springer; 2012. p. 337–60.

    Chapter  Google Scholar 

  26. Winters WD, Mori K, Spooner CE, Bauer RO. The neurophysiology of anesthesia. Anesthesiology. 1967;28(1):65–80.

    Article  CAS  PubMed  Google Scholar 

  27. *Franks NP, Lieb WR. Which molecular targets are most relevant to general anaesthesia? Toxicol Lett. 1998;100–101:1–8.

    Google Scholar 

  28. Gugino LD, Aglio LS, Segal NE. Use of transcranial magnetic stimulation for monitoring spinal cord motor paths. Sem Spine Surg. 1997;9:315–36.

    Google Scholar 

  29. Stephen JP, Sullivan MR, Hicks RG, Burke DJ, Woodforth IJ, Crawford MR. Cotrel-dubousset instrumentation in children using simultaneous motor and somatosensory evoked potential monitoring. Spine. 1996;21(21):2450–7.

    Article  CAS  PubMed  Google Scholar 

  30. Stone JL, Ghaly RF, Levy WJ, Kartha R, Krinsky L, Roccaforte P. A comparative analysis of enflurane anesthesia on primate motor and somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol. 1992;84(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kalkman CJ, Drummond JC, Ribberink AA. Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxide/opioid anesthesia in humans. Anesth Analg. 1991;73(4):410–5.

    Article  CAS  PubMed  Google Scholar 

  32. Taylor BA, Fennelly ME, Taylor A, Farrell J. Temporal summation—the key to motor evoked potential spinal cord monitoring in humans. J Neurol Neurosurg Psychiatry. 1993;56(1):104–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  34. Loughnan BA, Anderson SK, Hetreed MA, Weston PF, Boyd SG, Hall GM. Effects of halothane on motor evoked potential recorded in the extradural space. Br J Anaesth. 1989;63(5):561–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bonin RP, Orser BA. GABA(A) receptor subtypes underlying general anesthesia. Pharmacol Biochem Behav. 2008;90(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  36. Saper CB. The neurobiology of sleep. Continuum (Minneap Minn). 2013;19(1 Sleep Disorders):19–31. Epub Feb 13, 2013.

    Google Scholar 

  37. John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102(2):447–71.

    Article  PubMed  Google Scholar 

  38. Antkowiak B. How do general anaesthetics work? Naturwissenschaften. 2001;88(5):201–13.

    Article  CAS  PubMed  Google Scholar 

  39. Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, et al. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration[see comment][erratum appears in Anesth Analg. 2004 Jan;98(1):29]. Anesth Analg. 2003;97(3):718–40.

    Article  CAS  PubMed  Google Scholar 

  40. Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology. 1994;80(3):606–10.

    Article  CAS  PubMed  Google Scholar 

  41. Furst S. Transmitters involved in antinociception in the spinal cord. Brain Res Bull. 1999;48(2):129–41.

    Article  CAS  PubMed  Google Scholar 

  42. Van Dort CJ, Baghdoyan HA, Lydic R. Neurochemical modulators of sleep and anesthetic states. Int Anesthesiol Clin. 2008;46(3):75–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. da Costa VV, Saraiva RA, de Almeida AC, Rodrigues MR, Nunes LG, Ferreira JC. The effect of nitrous oxide on the inhibition of somatosensory evoked potentials by sevoflurane in children. Anaesthesia. 2001;56:202–7.

    Article  PubMed  Google Scholar 

  44. Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res. 1999;829:77–89.

    Article  CAS  PubMed  Google Scholar 

  45. Manninen PH, Lam AM, Nicholas JF. The effects of isoflurane and isoflurane-nitrous oxide anesthesia on brainstem auditory evoked potentials in humans. Anesth Analg. 1985;64(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  46. Shimoji K, Maruyama Y, Shimizu H, Fujioka H, Urano S. The effects of anesthetics on somatosensory evoked potentials from the brain and spinal cord in man. In: Gomez QJ, Egay LM, de la Cruz Odi MF, editors. Anaesthesia safety for all. New York: Elsevier; 1984. p. 159–64.

    Google Scholar 

  47. Peterson DO, Drummond JC, Todd MM. Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986;65(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  48. Neuloh G. Time to revisit VEP monitoring? Acta Neurochir (Wien). 2010;152(4):649–50.

    Article  Google Scholar 

  49. Nakagawa I, Hidaka S, Okada H, Kubo T, Okamura K, Kato T. [Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia] [article in Japanese]. Masui. 2006;55(6):692–8.

    Google Scholar 

  50. Ota T, Kawai K, Kamada K, Kin T, Saito N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J Neurosurg. 2010;112(2):285–94.

    Article  PubMed  Google Scholar 

  51. Tremblay F, Parkinson JE. Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population. Doc Ophthalmol. 2003;107(3):271–9.

    Article  PubMed  Google Scholar 

  52. Iohom G, Whyte A, Flynn T, O’Connor G, Shorten G. Postoperative changes in the full-field electroretinogram following sevoflurane anaesthesia. Eur J Anaesthesiol. 2004;21(4):272–8.

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki T, Itakura T, Suzuki K, Kasuya H, Munakata R, Muramatsu H, et al. Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method. J Neurosurg. 2010;112(2):273–84.

    Article  PubMed  Google Scholar 

  54. Logginidou HG, Li B-H, Li D-P, Lohmann JS, Schuler HG, DiVittore NA, et al. Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg. 2003;97(6):1784–8.

    Article  CAS  PubMed  Google Scholar 

  55. *Kawaguchi M, Sakamoto T, Ohnishi H, Shimizu K, Karasawa J, Furuya H. Intraoperative myogenic motor evoked potentials induced by direct electrical stimulation of the exposed motor cortex under isoflurane and sevoflurane. Anesth Analg. 1996;82(3):593–9.

    Google Scholar 

  56. Pechstein U, Nadstawek J, Zentner J, Schramm J. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol. 1998;108(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  57. Ubags LH, Kalkman CJ, Been HD. Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery. 1998;43(1):90–4; discussion 4–5.

    Article  CAS  PubMed  Google Scholar 

  58. Kammer T, Rehberg B, Menne D, Wartenberg H-C, Wenningmann I, Urban BW. Propofol and sevoflurane in subanesthetic concentrations act preferentially on the spinal cord: evidence from multimodal electrophysiological assessment. Anesthesiology. 2002;97(6):1416–25.

    Article  CAS  PubMed  Google Scholar 

  59. Pereon Y, Bernard JM, Nguyen The Tich S, Genet R, Petitfaux F, Guiheneuc P. The effects of desflurane on the nervous system: from spinal cord to muscles. Anesth Analg. 1999;89(2):490–5.

    CAS  PubMed  Google Scholar 

  60. Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology. 2000;93(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  61. Holdefer RN, Anderson C, Furman M, Sangare Y, Slimp JC. A comparison of the effects of desflurane versus propofol on transcranial motor-evoked potentials in pediatric patients. Childs Nerv Syst. 2014;30(12):2103–8.

    Article  PubMed  Google Scholar 

  62. Chong CT, Manninen P, Sivanaser V, Subramanyam R, Lu N, Venkatraghavan L. Direct comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials monitoring. J Neurosurg Anesthesiol. 2014;26(4):306–12.

    Article  PubMed  Google Scholar 

  63. Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29(1):77–85.

    Article  PubMed  Google Scholar 

  64. *Malcharek MJ, Loeffler S, Schiefer D, Manceur MA, Sablotzki A, Gille J, et al. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol: A prospective randomized trial. Clin Neurophysiol. 2015;126(9):1825–32.

    Google Scholar 

  65. Ohara A, Mashimo T, Zhang P, Inagaki Y, Shibuta S, Yoshiya I. A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg. 1997;85(4):931–6.

    Article  CAS  PubMed  Google Scholar 

  66. Houston HG, McClelland RJ, Fenwick PB. Effects of nitrous oxide on auditory cortical evoked potentials and subjective thresholds. Br J Anaesth. 1988;61(5):606–10.

    Article  CAS  PubMed  Google Scholar 

  67. Zentner J, Ebner A. Nitrous oxide suppresses the electromyographic response evoked by electrical stimulation of the motor cortex. Neurosurgery. 1989;24(1):60–2.

    Article  CAS  PubMed  Google Scholar 

  68. Thornton C, Creagh-Barry P, Jordan C, Luff NP, Dore CJ, Henley M, et al. Somatosensory and auditory evoked responses recorded simultaneously: differential effects of nitrous oxide and isoflurane [see comment]. Br J Anaesth. 1992;68(5):508–14.

    Article  CAS  PubMed  Google Scholar 

  69. Sloan TB, Rogers J, Rogers J, Sloan H. MAC fractions of nitrous oxide and isoflurane are not electrophysiologically additive in the ketamine anesthetized baboon. J Neurosurg Anesthesiol. 1995;7:314.

    Google Scholar 

  70. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide [erratum appears in Anesthesiology 1990 Jun;72(6):1104]. Anesthesiology. 1990;72(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sloan TB, Koht A. Depression of cortical somatosensory evoked potentials by nitrous oxide. Br J Anaesth. 1985;57(9):849–52.

    Article  CAS  PubMed  Google Scholar 

  72. Zentner J, Kiss I, Ebner A. Influence of anesthetics—nitrous oxide in particular—on electromyographic response evoked by transcranial electrical stimulation of the cortex. Neurosurgery. 1989;24(2):253–6.

    Article  CAS  PubMed  Google Scholar 

  73. Firsching R, Heinen-Lauten M, Loeschke G. [The effects of halothane and nitrous oxide on transcranial magnetic evoked potentials] [article in German]. Anasthesiol Intensivmed Notfallmed Schmerzther. 1991;26(7):381–3.

    Article  CAS  PubMed  Google Scholar 

  74. Jellinek D, Platt M, Jewkes D, Symon L. Effects of nitrous oxide on motor evoked potentials recorded from skeletal muscle in patients under total anesthesia with intravenously administered propofol. Neurosurgery. 1991;29(4):558–62.

    Article  CAS  PubMed  Google Scholar 

  75. Sloan TB. Evoked potentials. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 221–76.

    Google Scholar 

  76. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, de Boer A, Aarts LP, et al. Effect of nitrous oxide on myogenic motor potentials evoked by a six pulse train of transcranial electrical stimuli: a possible monitor for aortic surgery. Br J Anaesth. 1999;82(3):323–8.

    Article  PubMed  Google Scholar 

  77. Sakamoto T, Kawaguchi M, Inoue S, Furuya H. Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but not with additional propofol. Br J Anaesth. 2001;86(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  78. Scheepstra GL, de Lange JJ, Booij LH, Ros HH. Median nerve evoked potentials during propofol anaesthesia. Br J Anaesth. 1989;62(1):92–4.

    Article  CAS  PubMed  Google Scholar 

  79. Freye E, Hartung E, Schenk GK. Somatosensory-evoked potentials during block of surgical stimulation with propofol. Br J Anaesth. 1989;63(3):357–9.

    Article  CAS  PubMed  Google Scholar 

  80. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709–20.

    Article  CAS  PubMed  Google Scholar 

  81. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76(4):502–9.

    Article  CAS  PubMed  Google Scholar 

  82. Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J. Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery. 1993;33(3):407–15; discussion 15.

    CAS  PubMed  Google Scholar 

  83. Keller BP, Haghighi SS, Oro JJ, Eggers Jr GW. The effects of propofol anesthesia on transcortical electric evoked potentials in the rat. Neurosurgery. 1992;30(4):557–60.

    CAS  PubMed  Google Scholar 

  84. MacDonald DB, Al Zayed Z, Stigsby B. Tibial somatosensory evoked potential intraoperative monitoring: recommendations based on signal to noise ratio analysis of popliteal fossa, optimized P37, standard P37, and P31 potentials. Clin Neurophysiol. 2005;116(8):1858–69.

    Article  CAS  PubMed  Google Scholar 

  85. Kakinohana M, Nakamura S, Miyata Y, Sugahara K. Emergence from propofol anesthesia in a nonagenarian at a Bispectral Index of 52. Anesth Analg. 2005;101(1):169–70.

    Article  PubMed  Google Scholar 

  86. Kawaguchi M, Furuya H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: a consideration in anesthesia. J Anesthesia. 2004;18(1):18–28.

    Article  Google Scholar 

  87. Vinclair M, Broux C, Faure P, Brun J, Genty C, Jacquot C, et al. Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med. 2008;34(4):714–9.

    Article  PubMed  Google Scholar 

  88. Cuthbertson BH, Sprung CL, Annane D, Chevret S, Garfield M, Goodman S, et al. The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock. Intensive Care Med. 2009;35(11):1868–76.

    Article  CAS  PubMed  Google Scholar 

  89. Kochs E, Treede RD, Schulte am Esch J. [Increase in somatosensory evoked potentials during anesthesia induction with etomidate]. Anaesthesist. 1986;35(6):359–64.

    Article  CAS  PubMed  Google Scholar 

  90. Sloan TB, Ronai AK, Toleikis JR, Koht A. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67(6):582–5.

    Article  CAS  PubMed  Google Scholar 

  91. McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65(6):584–9.

    Article  CAS  PubMed  Google Scholar 

  92. Russ W, Thiel A, Schwandt HJ, Hempelmann G. [Somatosensory evoked potentials under thiopental and etomidate] [article in German]. Anaesthesist. 1986;35(11):679–85.

    CAS  PubMed  Google Scholar 

  93. Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67(5):435–41.

    Article  CAS  PubMed  Google Scholar 

  94. Langeron O, Lille F, Zerhouni O, Orliaguet G, Saillant G, Riou B, et al. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth. 1997;78(6):701–6.

    Article  CAS  PubMed  Google Scholar 

  95. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64(5):590–3.

    Article  CAS  PubMed  Google Scholar 

  96. Samra SK, Sorkin LS. Enhancement of somatosensory evoked potentials by etomidate in cats: an investigation of its site of action. Anesthesiology. 1991;74(3):499–503.

    Article  CAS  PubMed  Google Scholar 

  97. Glassman SD, Shields CB, Linden RD, Zhang YP, Nixon AR, Johnson JR. Anesthetic effects on motor evoked potentials in dogs. Spine. 1993;18(8):1083–9.

    Article  CAS  PubMed  Google Scholar 

  98. Yang LH, Lin SM, Lee WY, Liu CC. Intraoperative transcranial electrical motor evoked potential monitoring during spinal surgery under intravenous ketamine or etomidate anaesthesia. Acta Neurochir (Wien). 1994;127(3–4):191–8.

    Article  CAS  Google Scholar 

  99. Lumenta CB. Effect of etomidate on motor evoked potentials in monkeys [see comment]. Neurosurgery. 1991;29(3):480–2.

    Article  CAS  PubMed  Google Scholar 

  100. Sloan TB, Levin D. Etomidate amplifies and depresses transcranial motor evoked potentials in the monkey. J Neurosurg Anesthesiol. 1993;5:299.

    Google Scholar 

  101. Kano T, Shimoji K. The effects of ketamine and neuroleptanalgesia on the evoked electrospinogram and electromyogram in man. Anesthesiology. 1974;40(3):241–6.

    Article  CAS  PubMed  Google Scholar 

  102. Scheufler K-M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96(3):571–9.

    Article  CAS  PubMed  Google Scholar 

  103. Zentner J. Motor evoked potential monitoring in operations of the brainstem and posterior fossa. In: Schramm J, Moller AR, editors. Intraop neurophysiol monitoring. Berlin: Springer; 1991. p. 95–105.

    Google Scholar 

  104. Ghaly RF, Stone JL, Levy WJ, Kartha R, Adlrete A, Brunner EB, et al. The effect of an anesthetic induction dose of midazolam on motor potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesthesiol. 1991;3:20–5.

    Article  CAS  PubMed  Google Scholar 

  105. Schonle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett. 1989;101(3):321–4.

    Article  CAS  PubMed  Google Scholar 

  106. Crawford ME, Molkejensen F, Toftdahl DB, Madsen JB. Direct spinal effect of intrathecal and extradural midazolam on visceral noxius stimulation in rabbits. Br J Anaesth. 1993;70:642–6.

    Article  CAS  PubMed  Google Scholar 

  107. Faull RL, Villiger JW. Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study. Neuroscience. 1986;17(3):791–802.

    Article  CAS  PubMed  Google Scholar 

  108. Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.

    Article  PubMed  Google Scholar 

  109. Bloom M, Beric A, Bekker A. Dexmedetomidine infusion and somatosensory evoked potentials. J Neurosurg Anesthesiol. 2001;13:320–2.

    Article  CAS  PubMed  Google Scholar 

  110. Yamamoto Y, Kawaguchi M, Kakimoto M, Inoue S, Furuya H. The effects of dexmedetomidine on myogenic motor evoked potentials in rabbits. Anesth Analg. 2007;104(6):1488–92.

    Article  CAS  PubMed  Google Scholar 

  111. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.

    Article  CAS  PubMed  Google Scholar 

  112. Rozet I, Metzner J, Brown M, Treggiari MM, Slimp JC, Kinney G, et al. Dexmedetomidine does not affect evoked potentials during spine surgery. Anesth Analg. 2015;121(2):492–501.

    Article  CAS  PubMed  Google Scholar 

  113. Newlon PG, Greenberg RP, Enas GG, Becker DP. Effects of therapeutic pentobarbital coma on multimodality evoked potentials recorded from severely head-injured patients. Neurosurgery. 1983;12(6):613–9.

    Article  CAS  PubMed  Google Scholar 

  114. Drummond JC, Todd MM, U HS. The effect of high dose sodium thiopental on brainstem auditory and median somatosensory evoked responses in humans. Anesthesiology. 1985;63:249–54.

    Article  CAS  PubMed  Google Scholar 

  115. Sloan TB, Vasquez J, Burger E. Methohexital in total intravenous anesthesia during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2013;27(6):697–702.

    Article  PubMed  Google Scholar 

  116. Ghaly RF, Stone JL, Levy WJ, Krinsky L, Asokan A. The effect of neuroleptanalgesia (droperidol-fentanyl) on motor potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesthesiol. 1991;3:117–9.

    Article  CAS  PubMed  Google Scholar 

  117. Kalkman CJ, Drummond JC, Patel PM, Sano T, Chesnut RM. Effects of droperidol, pentobarbital, and ketamine on myogenic transcranial magnetic motor-evoked responses in humans. Neurosurgery. 1994;35(6):1066–71.

    Article  CAS  PubMed  Google Scholar 

  118. Lang EW, Beutler AS, Chesnut RM, Patel PM, Kennelly NA, Kalkman CJ, et al. Myogenic motor-evoked potential monitoring using partial neuromuscular blockade in surgery of the spine. Spine. 1996;21(14):1676–86.

    Article  CAS  PubMed  Google Scholar 

  119. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol. 1996;100(5):375–83.

    Article  CAS  PubMed  Google Scholar 

  120. Schmid UD, Boll J, Liechti S, Schmid J, Hess CW. Influence of some anesthetic agents on muscle responses to transcranial magnetic cortex stimulation: a pilot study in humans. Neurosurgery. 1992;30(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  121. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996;39(2):335–43; discussion 43–4.

    Article  CAS  PubMed  Google Scholar 

  122. Owen JH. Applications of neurophysiological measures during surgery of the spine. In: Frymoyer JW, editor. The adult spine: principles and practice. Philadelphia: Lippincott-Raven Publishers; 1997. p. 673–702.

    Google Scholar 

  123. Kalkman CJ, Been HD, Ongerboer de Visser BW. Intraoperative monitoring of spinal cord function. A review. Acta Orthop Scand. 1993;64(1):114–23.

    Article  CAS  PubMed  Google Scholar 

  124. Ubags LH, Kalkman CJ, Been HD, Drummond JC. The use of a circumferential cathode improves amplitude of intraoperative electrical transcranial myogenic motor evoked responses. Anesth Analg. 1996;82(5):1011–4.

    CAS  PubMed  Google Scholar 

  125. Zentner J. Noninvasive motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurgery. 1989;24(5):709–12.

    Article  CAS  PubMed  Google Scholar 

  126. Glassman SD, Zhang YP, Shields CB, Johnson JR, Linden RD. Transcranial magnetic motor-evoked potentials in scoliosis surgery. Orthopedics. 1995;18(10):1017–23.

    CAS  PubMed  Google Scholar 

  127. Zentner J. Motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurg Rev. 1991;14(1):29–36.

    CAS  PubMed  Google Scholar 

  128. Shields CB, Paloheimo MPJ, Backman MH, Edmonds HLJ, Johnson JR. Intraoperative use of transcranial magnetic motor evoked potentials. In: Chokroverty S, editor. Magnetic stimulation in clinical neurophysiology. London: Butterworths; 1990. p. 173–84.

    Google Scholar 

  129. Calancie B, Harris W, Broton JG. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88:457–70.

    Article  CAS  PubMed  Google Scholar 

  130. Herdmann J, Lumenta CB, Huse KO. Magnetic stimulation for monitoring of motor pathways in spinal procedures. Spine. 1993;18(5):551–9.

    Article  CAS  PubMed  Google Scholar 

  131. Levy WJ, McCaffrey M, York DH, Tanzer F. Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery. 1984;15(2):214–27.

    Article  CAS  PubMed  Google Scholar 

  132. Watt JW, Fraser MH, Soni BM, Sett PK, Clay R. Total i.v. anaesthesia for transcranial magnetic evoked potential spinal cord monitoring. Br J Anaesth. 1996;76(6):870–1.

    Article  CAS  PubMed  Google Scholar 

  133. Stinson Jr LW, Murray MJ, Jones KA, Assef SJ, Burke MJ, Behrens TL, et al. A computer-controlled, closed-loop infusion system for infusing muscle relaxants: its use during motor-evoked potential monitoring. J Cardiothorac Vasc Anesth. 1994;8(1):40–4.

    Article  PubMed  Google Scholar 

  134. Nagle KJ, Emerson RG, Adams DC, Heyer EJ, Roye DP, Schwab FJ, et al. Intraoperative monitoring of motor evoked potentials: a review of 116 cases. Neurology. 1996;47(4):999–1004.

    Article  CAS  PubMed  Google Scholar 

  135. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery. 1997;41(6):1327–36.

    Article  CAS  PubMed  Google Scholar 

  136. Lee VC. Spinal and cortical evoked potential studies in the ketamine-anesthetized rabbit: fentanyl exerts component-specific, naloxone-reversible changes dependent on stimulus intensity. Anesth Analg. 1994;78(2):280–6.

    Article  CAS  PubMed  Google Scholar 

  137. Chi OZ, McCoy CL, Field C. Effects of fentanyl anesthesia on visual evoked potentials in humans. Anesthesiology. 1987;67:827–30.

    Article  CAS  PubMed  Google Scholar 

  138. Asouhido I, Katsardis V, Vaidis G, Ioannou P, Givissis P, Christodoulou A, et al. Somatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis. 2010;5:8–13.

    Article  Google Scholar 

  139. Sloan T. Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst. 2010;26(2):227–35.

    Article  PubMed  Google Scholar 

  140. Schwender D, Klasing S, Madler C, Poppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993;71(5):629–32.

    Article  CAS  PubMed  Google Scholar 

  141. Shimoji K, Kano T. Evoked electrospinogram: interpretation of origin and effects of anesthetics. In: Phillips MI, editor. Brain unit activity during behavior. Springfield: Charles C. Thomas; 1973. p. 171–90.

    Google Scholar 

  142. Ghaly RF, Stone JL, Aldrete JA, Levy WL. Effects of incremental ketamine hydrochloride dose on motor evoked potentials (MEPs) F3 following transcranial magnetic stimulation: a primate study. J Neurosurg Anesthiol. 1990;2:79–85.

    Article  CAS  Google Scholar 

  143. Kothbauer K, Schmid UD, Liechti S, Rosler KM. The effect of ketamine anesthetic induction on muscle responses to transcranial magnetic cortex stimulation studied in man. Neurosci Lett. 1993;154(1–2):105–8.

    Article  CAS  PubMed  Google Scholar 

  144. Ubags LH, Kalkman CJ, Been HD, Porsius M, Drummond JC. The use of ketamine or etomidate to supplement sufentanil/N2O anesthesia does not disrupt monitoring of myogenic transcranial motor evoked responses. J Neurosurg Anesthiol. 1997;9(3):228–33.

    Article  CAS  Google Scholar 

  145. Inoue S, Kawaguchi M, Kakimoto M, Sakamoto T, Kitaguchi K, Furuya H, et al. Amplitudes and intrapatient variability of myogenic motor evoked potentials to transcranial electrical stimulation during ketamine/N2O- and propofol/N2O-based anesthesia. J Neurosurg Anesthiol. 2002;14(3):213–7.

    Article  Google Scholar 

  146. Iida H, Dohi S, Tanahashi T, Watanabe Y, Takenaka M. Spinal conduction block by intrathecal ketamine in dogs. Anesth Analg. 1997;85(1):106–10.

    CAS  PubMed  Google Scholar 

  147. Kissin I, Bright CA, Bradley Jr EL. The effect of ketamine on opioid-induced acute tolerance: can it explain reduction of opioid consumption with ketamine-opioid analgesic combinations? Anesth Analg. 2000;91(6):1483–8.

    Article  CAS  PubMed  Google Scholar 

  148. Sloan TB, Mongan P, Lyda C, Koht A. Lidocaine infusion adjunct to total intravenous anesthesia reduces the total dose of propofol during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2014;28(2):139–47.

    Article  PubMed  Google Scholar 

  149. Telci L, Esen F, Akcora D, Erden T, Canbolat AT, Akpir K. Evaluation of effects of magnesium sulphate in reducing intraoperative anaesthetic requirements. Br J Anaesth. 2002;89(4):594–8.

    Article  CAS  PubMed  Google Scholar 

  150. Loughman BA, Fennelly ME, Henley M, Hall GM. The effects of differing concentrations of bupivacaine on the epidural somatosensory evoked potential after posterior tibial nerve stimulation. Anesth Analg. 1995;81(1):147–51.

    CAS  PubMed  Google Scholar 

  151. Dahl JB, Rosenberg J, Lund C, Kehlet H. Effect of thoracic epidural bupivacaine 0.75% on somatosensory evoked potentials after dermatomal stimulation. Reg Anesth. 1990;15:73–5.

    Google Scholar 

  152. Loughnan BA, Murdoch LJ, Hetreed MA, Howard LA, Hall GM. Effects of 2% lignocaine on somatosensory evoked potentials recorded in the extradural space. Br J Anaesth. 1990;65(5):643–7.

    Article  CAS  PubMed  Google Scholar 

  153. Lang E, Erdmann K, Gerbershagen HU. Median nerve blockade during diagnostic intravenous regional anesthesia as measured by somatosensory evoked potentials [see comment]. Anesth Analg. 1993;76(1):118–22.

    Article  CAS  PubMed  Google Scholar 

  154. Benzon HT, Toleikis JR, Shanks C, Ramseur A, Sloan T. Somatosensory evoked potential quantification of ulnar nerve blockade. Anesth Analg. 1986;65(8):843–8.

    Article  CAS  PubMed  Google Scholar 

  155. Richardson J, Jones J, Atkinson R. The effect of thoracic paravertebral blockade on intercostal somatosensory evoked potentials. Anesth Analg. 1998;87(2):373–6.

    CAS  PubMed  Google Scholar 

  156. Svensson P, Arendt-Nielsen L, Bjerring P, Kaaber S. Oral mucosal analgesia quantitatively assessed by argon laser-induced thresholds and single-evoked vertex potentials. Anesth Pain Control Dent. 1993;2(3):154–61.

    CAS  PubMed  Google Scholar 

  157. Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, et al. The effects of the neuromuscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106(3):930–4.

    Article  CAS  PubMed  Google Scholar 

  158. Sloan TB. Nondepolarizing neuromuscular blockade does not alter sensory evoked potentials. J Clin Monit. 1994;10(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  159. Sloan TB. Evoked potential monitoring. Int Anesthesiol Clin. 1996;34(3):109–36.

    Article  CAS  PubMed  Google Scholar 

  160. Sloan TB, Erian R. Effect of atracurium-induced neuromuscular block on cortical motor-evoked potentials. Anesth Analg. 1993;76(5):979–84.

    Article  CAS  PubMed  Google Scholar 

  161. Sloan TB, Erian R. Effect of vecuronium-induced neuromuscular blockade on cortical motor evoked potentials. Anesthesiology. 1993;78(5):966–73.

    Article  CAS  PubMed  Google Scholar 

  162. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75(4):584–9.

    Article  CAS  PubMed  Google Scholar 

  163. Day BL, Rothwell JC, Thompson PD, Dick JPR, Cowan JMA, Berardelli A, et al. Motor cortex stimulation in intact man. Multiple descending volleys. Brain. 1987;110:1191–209.

    Article  PubMed  Google Scholar 

  164. Paton WD, Waud DR. The margin of safety of neuromuscular transmission. J Physiol. 1967;191(1):59–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, et al. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999;88(1):22–7.

    PubMed  Google Scholar 

  166. Hargreaves SJ, Watt JWH. Intravenous anaesthesia and repetitive transcranial magnetic stimulation monitoring in spinal column surgery. Br J Anaesth. 2005;94(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  167. de Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg. 1997;113(1):87–100; discussion, 1011.

    Google Scholar 

  168. Lee WY, Hou WY, Yang LH, Lin SM. Intraoperative monitoring of motor function by magnetic motor evoked potentials. Neurosurgery. 1995;36(3):493–500.

    Article  CAS  PubMed  Google Scholar 

  169. Sekimoto K, Nishikawa K, Ishizeki J, Kubo K, Saito S, Goto F. The effects of volatile anesthetics on intraoperative monitoring of myogenic motor-evoked potentials to transcranial electrical stimulation and on partial neuromuscular blockade during propofol/fentanyl/nitrous oxide anesthesia in humans. J Neurosurg Anesthesiol. 2006;18(2):106–11.

    Article  PubMed  Google Scholar 

  170. Guo L, Gelb AW. False negatives, muscle relaxants, and motor-evoked potentials. J Neurosurg Anesthesiol. 2011;23(1):64.

    Article  PubMed  Google Scholar 

  171. Burke D, Hicks RG, Stephen JP. Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol. 1990;425:283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kakimoto M, Kawaguchi M, Yamamoto Y, Inoue S, Horiuchi T, Nakase H, et al. Tetanic stimulation of the peripheral nerve before transcranial electrical stimulation can enlarge amplitudes of myogenic motor evoked potentials during general anesthesia with neuromuscular blockade. Anesthesiology. 2005;102(4):733–8.

    Article  PubMed  Google Scholar 

  173. Taniguchi M, Schram J, Cedzich C. Recording of myogenic motor evoked potential (mMEP) under general anesthesia. In: Schramm J, Moller AR, editors. Intraoperative neurophysiological monitoring. Berlin: Springer; 1991. p. 72–87.

    Google Scholar 

  174. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sloan TB. Evoked potentials. anesthesia and motor evoked-potentials monitoring. In: Deletis V, Shills J, editors. Neurophysiology in neurosurgery. San Diego: Academic Press; 2002. p. 451–64.

    Google Scholar 

  176. Cai YR, Xu J, Chen LH, Chi FL, Cai Y-R, Xu J, et al. Electromyographic monitoring of facial nerve under different levels of neuromuscular blockade during middle ear microsurgery. Clin Med J (Engl). 2009;122(3):311–4.

    Google Scholar 

  177. Kizilay A, Aladag I, Cokkeser Y, Miman MC, Ozturan O, Giulhas N. Effects of partial neuromuscular blockade on facial nerve monitorization in otologic surgery. Acta Otolaryngol. 2003;123:321–4.

    Article  PubMed  Google Scholar 

  178. Blair EA, Teeple Jr E, Sutherland RM, Shih T, Chen D. Effect of neuromuscular blockade on facial nerve monitoring. Am J Otol. 1994;15(2):161–7.

    CAS  PubMed  Google Scholar 

  179. Marusch F, Hussock J, Haring G, Hachenberg T, Gastinger I. Influence of muscle relaxation on neuromonitoring of the recurrent laryngeal nerve during thyroid surgery. Br J Anaesth. 2005;94(5):596–600.

    Article  CAS  PubMed  Google Scholar 

  180. Chu KS, Wu SH, Lu IC, Tsai CJ, Wu CW, Kuo WR, et al. Feasibility of intraoperative neuromonitoring during thyroid surgery after administration of nondepolarizing neuromuscular blocking agents. World J Surg. 2009;33(7):1408–13.

    Article  PubMed  Google Scholar 

  181. Minahan RE, Riley 3rd LH, Lukaczyk T, Cohen DB, Kostuik JP. The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine. 2000;25(19):2526–30.

    Article  CAS  PubMed  Google Scholar 

  182. Holland NR, Lukaczyk TA, Riley LH, 3rd, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine (Phila Pa 1976). 1998;23(2):224–7.

    Google Scholar 

  183. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27(1):35–46. Epub 2012/09/28.

    Article  PubMed  Google Scholar 

  184. Schwartz DM, Sestokas AK, Dormans JP, Vaccaro AR, Hilibrand AS, Flynn JM, et al. Transcranial electric motor evoked potential monitoring during spine surgery: is it safe? Spine (Phila Pa 1976). 2011;36(13):1046–9.

    Article  Google Scholar 

  185. Altermatt FR, Bugedo DA, Delfino AE, Solari S, Guerra I, Munoz HR, et al. Evaluation of the effect of intravenous lidocaine on propofol requirements during total intravenous anaesthesia as measured by bispectral index. Br J Anaesth. 2012;108(6):979–83.

    Article  CAS  PubMed  Google Scholar 

  186. *Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthiol. 2005;17(1):13–9.

    Google Scholar 

  187. Lee JY, Schwartz DM, Anderson DG, Hilibrand AS. Epidural hematoma causing dense paralysis after anterior cervical corpectomy. A report of two cases. J Bone Joint Surg Am. 2006;88(1):198–201.

    Article  PubMed  Google Scholar 

  188. May DM, Jones SJ, Crockard HA. Somatosensory evoked potential monitoring in cervical surgery: identification of pre- and intraoperative risk factors associated with neurological deterioration. J Neurosurg. 1996;85(4):566–73.

    Article  CAS  PubMed  Google Scholar 

  189. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.

    Article  CAS  PubMed  Google Scholar 

  190. Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):409–15.

    Article  PubMed  Google Scholar 

  191. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96(2):255–62.

    Article  PubMed  Google Scholar 

  192. Dolan EJ, Transfeld EE, Tator CH, Simmons EH, Hughes KF. The effect of spinal distraction on regional blood flow in cats. J Neurosurg. 1980;53:756–64.

    Article  CAS  PubMed  Google Scholar 

  193. Klee MR, Pierau FK, Faber DS. Temperature effects on resting potential and spike parameters of cat motoneurons. Exp Brain Res. 1974;19(5):478–92.

    Article  CAS  PubMed  Google Scholar 

  194. Desmedt JE. Somatosensory evoked potentials in neuromonitoring. In: Desmedt JE, editor. Neuromonitoring for surgery. Amsterdam: Elsevier; 1989. p. 1–22.

    Google Scholar 

  195. Weight FF, Erulkar SD. Synaptic transmission and effects of temperature at the squid giant synapse. Nature. 1976;261(5562):720–2.

    Article  CAS  PubMed  Google Scholar 

  196. Dolman J, Silvay G, Zappulla R, Toth C, Erickson N, Mindich BP, et al. The effect of temperature, mean arterial pressure, and cardiopulmonary bypass flows on somatosensory evoked potential latency in man. Thorac Cardiovasc Surg. 1986;34:217–22.

    Article  CAS  PubMed  Google Scholar 

  197. Hill R, Sebel PS, de Bruijn N, Neville W. Alterations in somatosensory evoked potentials associated with inadequate venous return during cardiopulmonary bypass. J Cardiothorac Anesth. 1987;1(1):48–50.

    Article  CAS  PubMed  Google Scholar 

  198. Deutsch E, Sohmer H, Weidenfeld J, Zelig S, Chowers I. Auditory nerve brain-stem evoked potentials and EEG during severe hypoglycemia. Electroencephalogr Clin Neurophysiol. 1983;55:714–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tod B. Sloan M.D., M.B.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sloan, T.B. (2017). Anesthesia Management and Intraoperative Electrophysiological Monitoring. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics