The first main finding of our study was that PEEP showed positive effects on FRC, compliance, and PaO2/FIO2 ratio, indicating that patients undergoing upper abdominal surgery might benefit from PEEP 10 cmH2O.
The FRC examinations were performed using an Engström Carestation (GE Healthcare) equipped with the FRC Inview monitoring feature. The FRC is determined using the change of lung nitrogen volume after a step change in the inspired oxygen fraction. In the Engström Carestation, when ventilated with FIO2 1.0, where the O2 consumption was calculated from the CO2 production with a default RQ of 0.85, very high measurement precision was attained [2].
Results show that FRC was reduced by 37 % from the awake level after the induction of anesthesia. As previously reported, FRC is reduced by approximately 15 % during anesthesia induced with thiopentone and maintained with halothane at FIO2 0.35 [4]. Our protocol was FIO2 1.0 at induction of anesthesia, which engendered absorption atelectasis because of the high concentration of oxygen. The mechanisms underlying reduction of FRC include muscle paralysis, decreased chest wall recoil, increased abdominal pressure, atelectasis formation, and gas entrapment behind a closed airway [5]. Our results showed no significant change in FRC between that after induction of anesthesia and that during operation at zero end-expiratory pressure (ZEEP). During abdominal operation, FRC increased transiently when the cavity was opened [6]. However, during the surgery procedure, FRC decreased and returned to post-induction levels at the end of the procedure. Indeed, pulmonary gas exchange, which is impaired following induction of anesthesia, deteriorates during laparotomy but not during peripheral surgery. The difference is probably explained by the effect of surgical influences (packs, retractors, etc.) on FRC [1]. At opeP0, surgical influences (retractors) were started.
Results of this study demonstrated that PEEP 10 cmH2O reached nearly the same FRC level as that of awake FRC. No data exist to elucidate waking FRC for different PEEP levels, showing intraoperative FRC changes. Neumann et al. [7] presented measured mean FRC data for postoperative patients at different PEEP levels (0, 5, 10 cmH2O). Their study revealed that PEEP increased FRC at levels of PEEP 5 and 10 cmH2O; PEEP decreased FRC after reversion to PEEP of 0 cmH2O. Pelosi et al. [8] reported that PEEP 10 cmH2O did not improve respiratory function in paralyzed or anesthetized postoperative patients. Their mean PaO2/FIO2 ratio was 436 mmHg, and their tidal volume was 8–12 ml/kg ideal body weight. Our mean PaO2/FIO2 ratio was 253 mmHg, and tidal volume was 7 ml/kg ideal body weight at PEEP 0 cmH2O intraoperatively. Lower tidal volume might engender atelectasis, especially if PEEP is low or not used at all. Sufficient PEEP must be used to minimize atelectasis and to maintain oxygenation [9].
Determann et al. described a randomized controlled nonblinded preventive trial comparing mechanical ventilation with tidal volume of 10 versus 6 ml/kg in critically ill patients without acute lung injury (ALI) at the onset of mechanical ventilation. Mechanical presentation with 10 ml/kg is associated with sustained cytokine production in plasma [10]. Those results suggest that mechanical ventilation with conventional tidal volumes contributed to the development of lung injury in patients without ALI at the onset of mechanical ventilation. This theory applies to mechanical ventilation during surgery.
Administration of PEEP alone increased the normally aerated lung fraction, which combined with a reduction of poorly aerated lung tissue while atelectasis remained unchanged [10]. An earlier study of postoperative mechanically ventilated obese patients (mean body mass index, 51) after abdominal surgery showed that PEEP 10 cmH2O increased PaO2, respiratory compliance, and FRC [8]. PEEP at 10 cmH2O was sufficient to maintain substantial improvement of respiratory function. Reportedly, PEEP higher than 10 cmH2O is associated with marked derangement of hemodynamics [11]. Rothen et al. [12] reported that static compliance and the amount of atelectasis estimated using computed tomography (CT) did not change in parallel. Maisch et al. [13] described that compliance indicates an optimal level of PEEP after recruitment in anesthetized patients, reporting that optimal PEEP was 10 cmH2O because, at that pressure level, the highest compliance value in conjunction with the lowest dead space fraction revealed a maximum amount of effectively expanded alveoli. Our results demonstrated that the quasistatic compliance was significantly higher for opeP 10.2 than for opeP 5.1. PEEP 10 cmH2O did not produce the pre-operation level of PaO2/FIO2, probably because of a ventilation and circulation mismatch by mechanical ventilation or because recruitment maneuvers were not used. The increased intrapleural pressure caused by PEEP might also increase the risk of barotrauma and cause changes to cardiovascular dynamics. Two trials reported postoperative barotrauma in both PEEP and ZEEP [14, 15]. The event rate was zero in both groups in both trials. The Imberger G group calculated an effect estimate of cardiac complication. Their comparison revealed RR of 0.3 for the PEEP group, which was not statistically significant [16]. It remains unclear whether the increases in FRC and P/F ratio are attributable to the increase in PEEP level, or to a time-dependent effect of PEEP, or both. During a time study of 5 h operation, PaO2 showed constant values at much lower tidal volumes of 6 ml/kg and PEEP 10 cmH2O (21 patients were enrolled; 13 cases were upper abdominal surgeries with abdominal opening) [17]. Following coronary artery bypass grafting, significant reduction of P (A–a) O2 during positive pressure ventilation at 10 cmH2O PEEP was compared with 0 cmH2O PEEP and 5 cmH2O PEEP during 6 h [18]. These data show that pulmonary oxygenation might maintain constant values at equal PEEP levels.
As one limitation of our study, PEEP was applied in a stepwise increasing fashion. We have no data for P/F ratio and FRC on time-dependent effect of PEEP. However, the same PEEP level was maintained for 2 h. Two hours after changing PEEP, the FRC data were slightly higher than at 1 h after changing PEEP, but the values were not significantly different. The PEEP levels at opeP0, opeP5.2, and opeP10.2 were correlated with FRC and with PaO2/FIO2. Consequently, the PEEP increase was inferred to have engendered the FRC increase. The PEEP levels might be applied in a random sequence to mitigate this potential bias in the results.