Skip to main content

Advertisement

Log in

Mitochondrial metabolism in the noncancerous liver determine the occurrence of hepatocellular carcinoma: a prospective study

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Recurrence determines the postoperative prognosis with hepatocellular carcinoma (HCC). It is unknown how the liver dysfunction involving organic anion transporter failure causes the occurrence of HCCs. This study was designed to elucidate the link between liver dysfunction and multicentric occurrence (MO) after radical hepatectomy.

Methods

Forty-nine samples of noncancerous liver tissue from HCC patients within the Milan criteria who were treated at our institution between January 2004 and August 2008 were examined as a training set by using genome-wide gene expression analysis. Using the independent 2-institutional cohort of 134 patients between September 2008 and December 2009, we performed a validation study using tissue microarray analysis. Cox proportional hazard regression analyses for MFS were performed to estimate the risk factors.

Results

In the Gene Ontology database (GO:0015711), SLC22A7 expression was the best predictor of MO-free survival [MFS] (Fold, 0.726; P = 0.001). High SLC22A7 gene expression prevented the occurrence of HCC after hepatectomy (odds ratio [OR], 0.2; P = 0.004). Multivariate analyses identified SLC22A7 expression as an independent risk factor (OR, 0.3; P = 0.043). In the validation study, multivariate analyses of MFS identified SLC22A7 expression as an independent risk factor (OR, 0.5; P = 0.012). As judged by gene set enrichment analysis, SLC22A7 down regulation was associated with mitochondrion (P = 0.008) and oxidoreductase activity (P = 0.006). Sirtuin 3 as a regulator of mitochondrial metabolism also determined MFS (P = 0.018).

Conclusions

The mitochondrial pathways may affect SLC 22A7 function to promote the occurrence of HCC. (Word count: 246).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

FDR:

False discovery rate

GSEA:

Gene set enrichment analysis

HCC:

Hepatocellular carcinoma

HR:

Hazard ratio

MO:

Multicentric occurrence

NES:

Normalized enrichment score

OR:

Odds ratio

References

  1. Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Schlitt HJ, Schnitzbauer AA. Hepatocellular carcinoma: agents and concepts for preventing recurrence after curative treatment. Liver Transpl. 2011;17(Suppl 3):S10–2.

    Article  PubMed  Google Scholar 

  3. Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori M. Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol. 2010;45:146–52.

    Article  CAS  PubMed  Google Scholar 

  4. Japan LCSGo: The general rules for the clinical and pathological study of primary liver cancer (in japanese). 5th ed. Tokyo: Kanehara; 2009. p. 43.

  5. Arii S, Yamaoka Y, Futagawa S, Inoue K, Kobayashi K, Kojiro M, et al. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in japan. The liver cancer study group of japan. Hepatology. 2000;32:1224–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa K, Kokudo N, Imamura H, Matsuyama Y, Aoki T, Minagawa M, et al. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg. 2005;242:252–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Imamura H, Matsuyama Y, Tanaka E, Ohkubo T, Hasegawa K, Miyagawa S, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.

    Article  PubMed  Google Scholar 

  8. Kobayashi A, Miyagawa S, Miwa S, Nakata T. Prognostic impact of anatomical resection on early and late intrahepatic recurrence in patients with hepatocellular carcinoma. J Hepatobiliary Pancreat Surg. 2008;15:515–21.

    Article  PubMed  Google Scholar 

  9. Kudo A, Kashiwagi S, Kajimura M, Yoshimura Y, Uchida K, Arii S, et al. Kupffer cells alter organic anion transport through multidrug resistance protein 2 in the post-cold ischemic rat liver. Hepatology. 2004;39:1099–109.

    Article  CAS  PubMed  Google Scholar 

  10. Sekine T, Cha SH, Tsuda M, Apiwattanakul N, Nakajima N, Kanai Y, Endou H. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 1998;12:179–82.

    Article  Google Scholar 

  11. Fork C, Bauer T, Golz S, Geerts A, Weiland J, Del Turco D, et al. Oat2 catalyses efflux of glutamate and uptake of orotic acid. Biochem J. 2011;436:305–12.

    Article  CAS  PubMed  Google Scholar 

  12. Laconi E, Vasudevan S, Rao PM, Rajalakshmi S, Pani P, Sarma DS. The development of hepatocellular carcinoma in initiated rat liver after a brief exposure to orotic acid coupled with partial hepatectomy. Carcinogenesis. 1993;14:2527–30.

    Article  CAS  PubMed  Google Scholar 

  13. Takayama T, Makuuchi M, Hirohashi S, Sakamoto M, Yamamoto J, Shimada K, et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure. Hepatology. 1998;28:1241–6.

    Article  CAS  PubMed  Google Scholar 

  14. Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Yamamoto T, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002;301:797–802.

    Article  CAS  PubMed  Google Scholar 

  15. Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell. 2011;41:139–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. Sirt3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464:121–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tanaka S, Mogushi K, Yasen M, Ban D, Kudo A, Arii S, et al. Oxidative stress pathways in noncancerous human liver tissue to predict hepatocellular carcinoma recurrence: a prospective, multicenter study. Hepatology. 2011;54:1273–81.

    Article  CAS  PubMed  Google Scholar 

  19. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9:171.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Su GM, Sefton RM, Murray M. Down-regulation of rat hepatic microsomal cytochromes p-450 in microvesicular steatosis induced by orotic acid. J Pharmacol Exp Ther. 1999;291:953–9.

    CAS  PubMed  Google Scholar 

  21. Zhang WV, Ramzan I, Murray M. Impaired microsomal oxidation of the atypical antipsychotic agent clozapine in hepatic steatosis. J Pharmacol Exp Ther. 2007;322:770–7.

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Han YH, Yang Z, Rodrigues AD. Effect of interferon-alpha2b on the expression of various drug-metabolizing enzymes and transporters in co-cultures of freshly prepared human primary hepatocytes. Xenobiotica. 2011;41:476–85.

    Article  CAS  PubMed  Google Scholar 

  23. Locker GJ, Mader RM, Steiner B, Wenzl E, Zielinski CC, Steger GG. Benefit of interferon-alpha2b in a patient with unresectable hepatoma and chronic infection with hepatitis c virus. Eur J Gastroenterol Hepatol. 2000;12:251–3.

    Article  CAS  PubMed  Google Scholar 

  24. Kudo A, Ban D, Aihara A, Irie T, Ochiai T, Nakamura N, Tanaka S, Arii S. Decreased Mrp2 transport in severe macrovesicular fatty liver grafts. J Surg Res. 2012;178(2):915–21.

    Google Scholar 

  25. Ban D, Kudo A, Sui S, Tanaka S, Nakamura N, Ito K, et al. Decreased mrp2-dependent bile flow in the post-warm ischemic rat liver. J Surg Res. 2009;153:310–6.

    Article  CAS  PubMed  Google Scholar 

  26. Norimizu S, Kudo A, Kajimura M, Ishikawa K, Taniai H, Suematsu M, et al. Carbon monoxide stimulates mrp2-dependent excretion of bilirubin-ixalpha into bile in the perfused rat liver. Antioxid Redox Signal. 2003;5:449–56.

    Article  CAS  PubMed  Google Scholar 

  27. Sui S, Kudo A, Suematsu M, Tanaka S, Ito K, Arii S, et al. Preservation solutions alter mrp2-dependent bile flow in cold ischemic rat livers. J Surg Res. 2010;159:572–81.

    Article  CAS  PubMed  Google Scholar 

  28. Rao PM, Nagamine Y, Roomi MW, Rajalakshmi S, Sarma DS. Orotic acid, a new promoter for experimental liver carcinogenesis. Toxicol Pathol. 1984;12:173–8.

    Article  CAS  PubMed  Google Scholar 

  29. Laurier C, Tatematsu M, Rao PM, Rajalakshmi S, Sarma DS. Promotion by orotic acid of liver carcinogenesis in rats initiated by 1,2-dimethylhydrazine. Cancer Res. 1984;44:2186–91.

    CAS  PubMed  Google Scholar 

  30. Denda A, Laconi E, Rao PM, Rajalakshmi S, Sarma DS. Sequential histopathological analysis of hepatocarcinogenesis in rats during promotion with orotic acid. Cancer Lett. 1994;82:55–64.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing mdm2-mediated p53 degradation. Biochem Biophys Res Commun. 2012;423:26–31.

    Article  CAS  PubMed  Google Scholar 

  32. Jeffers LJ, Dubow RA, Zieve L, Reddy KR, Livingstone AS, Neimark S, et al. Hepatic encephalopathy and orotic aciduria associated with hepatocellular carcinoma in a noncirrhotic liver. Hepatology. 1988;8:78–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Health and Labour Sciences Research Grant (H20-Kanen-Ippan-001) from the Ministry of Health, Labour, and Welfare of Japan and a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors thank Hiromi Ohnari and Ayumi Shioya for clerical and technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kudo.

Additional information

Accession number of repository for expression microarray data: GSE40873.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

535_2013_791_MOESM2_ESM.tif

Supplementary figure. 1 Sirtuin 3 related mechanisms and the correlation between SLC22A7 transports and mitochondrial mechanisms. Note the orotic acid regulated by sirtuin 3 is transported through SLC22A7. Sirtuin 3 regulates antioxidant pathway, acetate metabolism, and beta-oxidation. (TIFF 3085 kb)

535_2013_791_MOESM3_ESM.eps

Supplementary figure 2. GSEA evaluation of gene-expression profile associated with SLC22A7. Heat map of genes in the sirtuin 3-related gene set. (EPS 894 kb)

535_2013_791_MOESM4_ESM.tif

Supplementary figure 3. GSEA evaluation of gene-expression profile associated with SLC22A7. Note the enrichment plot of sirtuin 3 related gene set (P = 0.008; FDR = 0.008; NES = 1.786). (TIFF 3924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo, A., Mogushi, K., Takayama, T. et al. Mitochondrial metabolism in the noncancerous liver determine the occurrence of hepatocellular carcinoma: a prospective study. J Gastroenterol 49, 502–510 (2014). https://doi.org/10.1007/s00535-013-0791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0791-4

Keywords

Navigation