Skip to main content

Advertisement

Log in

Permian–Triassic magmatic rocks in the Middle Gobi volcanic-plutonic belt, Mongolia: revisiting the scissor-like closure model of the Mongol-Okhotsk Ocean

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

As the youngest segment of the Central Asian Orogenic Belt, the Mongol-Okhotsk Belt is critical for understanding the final amalgamation of East Asia. However, whether the Mongol-Okhotsk Ocean closed in a scissor-like manner remains controversial, in part because the spatial and temporal change of the subduction-related magmatic records are not well constrained. This paper presents new zircon U–Pb ages and whole-rock geochemical data for the Permian–Triassic magmatic rocks in the Middle Gobi belt. Zircon U–Pb dating indicates that the Luus dacite, Luus andesite, East Monhhaan granite and South Monhhaan rhyolite yielded U–Pb ages of 272 ± 4 Ma, 221 ± 2 Ma, 256 ± 2 Ma and 229 ± 2 Ma, respectively. The Luus dacite and South Monhhaan rhyolite show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, indicating genesis in a subduction zone setting. The Luus andesite shows adakite geochemical features and was likely formed from partial melting of subducted oceanic crust. The East Monhhaan granite is of peraluminous S-type granite. These Permian–Triassic magmatic rocks are likely formed in an active margin related to the southward subduction of the Mongol-Okhotsk Ocean. Based on available data, we suggest that there is no significant age difference from west to east for the subduction-related magmatic complex at the southern margin of the Mongol-Okhotsk Ocean. Various Late Triassic subduction-related records in central Mongolia indicate the western segment of the Mongol-Okhotsk Ocean was finally closed during Jurassic, nearly contemporary with final closure of the eastern segment. Thus, we argue that the Mongol-Okhotsk Ocean was not likely closed in a scissor-like pattern as previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All research data are provided in Supplemental Information of the online version.

References

  • Antipin V, Gerel O, Perepelov A, Odgerel D, Zolboo T (2016) Late Paleozoic and Early Mesozoic rare-metal granites in Central Mongolia and Baikal region: review of geochemistry, possible magma sources and related mineralization. J Geosci Czech 61:105–125

    Article  Google Scholar 

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101(11):2377–2404

    Article  Google Scholar 

  • Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21:87–104

    Article  Google Scholar 

  • Berzina AN, Sotnikov VI, Economou-Eliopoulos M, Eliopoulos DG (2005) Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geol Rev 26:91–113

    Article  Google Scholar 

  • Blight JHS, Petterson MG, Crowley QG, Cunningham D (2010) The Oyut Ulaan volcanic group: stratigraphy, magmatic evolution and timing of Carboniferous arc development in southeast Mongolia. J Geol Soc Lond 167:491–509

    Article  Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24

    Article  Google Scholar 

  • Buchko IV, Sorokin AA, Izokh AE, Larin AM, Kotov AB, Sal’nikova EB, Velikoslavinkii SD, Sorokin AP, Yakovleva SZ, Plotkina Y (2008) Petrology of the Early Mesozoic ultramafic-mafic Luchina massif (southeastern periphery of the Siberian craton). Russ Geol Geophys 49(8):570–581

    Article  Google Scholar 

  • Buchko IV, Sorokin AA, Sal’nikova EB, Kotov AB, Velikoslavinkii SD, Larin AM, Izokh AE, Yakovleva SZ (2010) The Triassic stage of mafic magmatism in the Dzhugdzhur-Stanovoi Superterrane (southern framework of the North Asian Craton). Russ Geol Geophys 51(11):1157–1166

    Article  Google Scholar 

  • Budnikov SV, Kovalenko VI, Kotov AB, Salnikova EB, Kovach VP (1999) The ages and sources of Hangay batholith (Central Mongolia). Mong Geosci 14:35–36

    Google Scholar 

  • Bussien D, Gombojav N, Winkler W, Quadt A (2011) The Mongol-Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 510:132–150

    Article  Google Scholar 

  • Castillo PR (2012) Adakite petrogenesis. Lithos 134–135:304–316

    Article  Google Scholar 

  • Castillo PR, Janney PE, Solidum R (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights into the source of adakite and other lavas in a complex arc tectonic setting. Contrib Mineral Petrol 134:33–51

    Article  Google Scholar 

  • Charlier BLA, Bachmann O, Davidson JP, Dungan MA, Morgan D (2007) The Upper Crustal evolution of a large silicic magma body: evidence from crystal-scale Rb/Sr isotopic heterogeneities in the fish canyon magmatic system, Colorado. J Petrol 48(10):1875–1894

    Article  Google Scholar 

  • Chen ZG, Zhang LC, Lu BZ, Li ZL, Wu HY, Xiang P, Huang SW (2010) Geochronology and geochemistry of the Taipingchuan copper–molybdenum deposit in Inner Mongolia, and its geological significances. Acta Petrol Sin 26(05):1437–1449 (in Chinese with English abstract)

    Article  Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee H, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Cocks LRM, Torsvik TH (2007) Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth Sci Rev 82(1–2):29–74

    Article  Google Scholar 

  • Cogné JP, Kravchinsky VA, Halim N, Hankard F (2005) Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia). Geophys J Int 163(2):813–832

    Article  Google Scholar 

  • Cole RB, Stewart BW (2009) Continental margin volcanism at sites of spreading ridge subduction: examples from southern Alaska and western California. Tectonophysics 464:118–136

    Article  Google Scholar 

  • Collins WJ, Richards SW (2008) Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 36:559–562

    Article  Google Scholar 

  • Compston W, Williams IS, Mayer C (1984) U-Pb geochronology of zircons from Lunar Breccia 73217 using a sensitive high resolution ion microprobe. Proc. XIV Lunar planetary science conference. J Geophys Res 89(1):B525–B534

    Article  Google Scholar 

  • Corfu F, Ravna EJK, Kullerud K (2003) A Late Ordovician U–Pb age for the Tromso Nappe eclogites, Uppermost Allochthon of the Scandinavian Caledonides. Contrib Mineral Petrol 145(4):502–513

    Article  Google Scholar 

  • Daly RA (1914) Igneous rocks and their origin. McGraw-Hill, London

    Google Scholar 

  • Dan W, Li XH, Wang Q, Wang XC, Liu Y (2014) Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications: in situ zircon U-Pb-Hf-O isotopic and geochemical constraints. Am J Sci 314:110–153

    Article  Google Scholar 

  • Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Planet Sci 35(1):273–311

    Article  Google Scholar 

  • Deering CD, Vogel TA, Patino LC, Szymanski DW, Alvarado GE (2012) Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs. Contrib Mineral Petrol 163:259–275

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Demonterova EI, Ivanov AV, Mikheeva EM, Arzhannikova AV, Frolov AO, Arzannikov SG et al (2017) Early to Middle Jurassic history of the southern Siberian continent (Transbaikalia) recorded in sediments of the Siberian Craton: Sm-Nd and U-Pb provenance study. B Soc Geol Fr 188(1–2):8

    Article  Google Scholar 

  • Dolzodmaa B, Osanai Y, Nakano N, Adachi T (2020) Zircon U-Pb geochronology and geochemistry of granitic rocks in central Mongolia. Mong Geosci 50:23–44

    Article  Google Scholar 

  • Donskaya TV, Gladkochub DP, Mazukabzov AM, Ivanov AV (2013) Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million–year history of the Mongol-Okhotsk Ocean. J Asian Earth Sci 62:79–97

    Article  Google Scholar 

  • Dostal J, Owen JV, Gerel O, Keppie JD, Corney R, Shellnutt JG, MacRae A (2014) The 186 Ma Dashibalbar alkaline granitoid pluton in the North-Gobi rift of Central Mongolia: evidence for melting of Neoproterozoic basement above a plume. Am J Sci 314:613–648

    Article  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J Geophys Res 95:21503–21521

    Article  Google Scholar 

  • Gagnevin D, Daly JS, Poli G (2008) Insights into granite petrogenesis from quantitative assessment of the field distribution of enclaves, xenoliths and K-feldspar megacrysts in the Monte Capanne pluton, Italy. Mineral Mag 72:925–940

    Article  Google Scholar 

  • Ganbat A, Tsujimori T, Miao LC, Safonova I, Pastor-Gal′an D, Anaad C, Baatar M, Aoki S, Aoki K, Savinskiy I (2021) Late Paleozoic-Early Mesozoic granitoids in the Khangay-Khentey basin, Central Mongolia: Implication for the tectonic evolution of the Mongol-Okhotsk Ocean margin. Lithos 404–405:106455. https://doi.org/10.1016/j.lithos.2021.106455

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Gao JF, Zhou MF, Robinson PT, Wangm CY, Zhao JH, Malpas J (2015) Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau. J Asian Earth Sci 98:1–17

    Article  Google Scholar 

  • Gao LE, Zeng LS, Asimow PD (2016) Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites. Geology 45:39–42

    Article  Google Scholar 

  • Gao P, Zheng YF, Mayne MJ, Zhao ZF (2021) Miocene high-temperature leucogranite magmatism in the Himalayan orogen. Geol Soc Am Bull 133:679–690

    Article  Google Scholar 

  • Gendenjamts B, Munkhtsengel B, Odgerel D, Sanchir D, Ganbat B (2019) Age, origin and tectonic setting of Dulaankhan granitic pluton in northern Mongolia. Mong Geosci. https://doi.org/10.5564/mgs.v0i49.1224

    Article  Google Scholar 

  • Gillis KM (2008) The roof of an axial magma chamber: a hornfelsic heat exchanger. Geology 36:299–302

    Article  Google Scholar 

  • Gordienko IV, Minina OR, Vetluzhskikh LI, Medvedev AYa, Odgerel D (2018) Hentei-Dauria fold system of the Mongolia-Okhotsk belt: magmatism, sedimentogenesis, and geodynamics. Geodyn Tectonophys 9(3):1063–1097

    Article  Google Scholar 

  • Gou J, Sun DY, Ren YS, Liu YJ, Zhang SY, Fu CL, Wang TH, Wu PF, Liu XM (2013) Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: geochronological, geochemical and Hf isotopic evidence. J Asian Earth Sci 67–68:114–137

    Article  Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359

    Article  Google Scholar 

  • Guffanti M, Clynne MA, Muffler LPJ (1996) Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust. J Geophys Res Solid Earth 101:3003–3013

    Article  Google Scholar 

  • Guy A, Schulmann K, Clauer N, Hasalová P, Seltmann R, Armstrong R, Lexa O, Benedicto A (2014) Late Paleozoic-Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data. Gondwana Res 25:309–337

    Article  Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics, vol 19. Geological Society Special Publication, London, pp 67–81

    Google Scholar 

  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. J Petrol 48:2341–2357

    Article  Google Scholar 

  • He Z, Li J, Mo S, Sorokin AA (2005) Geochemical discriminations of sandstones from the Mohe foreland basin, northeastern China: tectonic setting and provenance. Sci China Ser D Earth Sci 48(5):613–621. https://doi.org/10.1360/02yd0376

    Article  Google Scholar 

  • Hopkinson TN, Harris NBW, Warren CJ, Spencer CJ, Roberts NMW, Horstwood MSA, Parrish RR, EIMF (2017) The identification and significance of pure sediment-derived granites. Earth Planet Sci Lett 467:57–63

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211(1–2):47–69

    Article  Google Scholar 

  • Jahn BM (2004) The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol Soc Lond, Spec Publ 226:73–100

  • Jahn BM, Wu FY, Chen B (2000) Granitoids of the Central Asian orogenic belt and continental growth in the phanerozoic. Trans R Soc Edinb Earth Sci 91:181–193

    Google Scholar 

  • Jahn BM, Litvinovsky BA, Zanvilevich AN, Reichow M (2009) Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113:521–539

    Article  Google Scholar 

  • Jian P, Kroener A, Zhou G (2012) SHRIMP zircon U-Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China. Chem Geol 328:49–69

    Article  Google Scholar 

  • Jiang S, Nie F, Su Y, Cai J, Ding Z (2010) The geological features and origin of the Tumurtin Ovoo Large-Scale Zinc Deposit, Mongolia. Acta Geol Sin 31:321–330 (in Chinese with English abstract)

    Google Scholar 

  • Kelty TK, Yin A, Dash B, Gehrels GE, Ribeiro AE (2008) Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics 451:290–311

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315(5814):980–983

    Article  Google Scholar 

  • Khishigsuren S, Gerel O, Chuluun D, Bat-Ulzii D, Mukhbat B (2012) Origin of Early Mesozoic Bogd Ull granite pluton, Ulaanbaatar area, Mongolia. Bull Nagoya Univ Museum 28:45–59

    Google Scholar 

  • Kotov AB, Larin AM, Salnikova EB, Velikoslavinskii SD, Sorokin AA, Sorokin AP, Yakovleva SZ, Anisimova IV, Tolmacheva EV (2012) Tok-Algoma magmatic complex of the Selenga-Stanovoi Superterrain in the Central Asian fold belt: age and tectonic setting. Dokl Earth Sci 444(1):562–567

    Article  Google Scholar 

  • Kozlov VD, Efremov SV, Dril SI, Sandimirova GP (2003) Geochemistry, isotopic geochronology, and genesis of the Verkhnyaya Unda granitoid batholith. Geochem Int 41(4):364–378

    Google Scholar 

  • Kravchinsky VA, Cogne JP, Harbert WP, Kuzmin MI (2002) Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys J Int 148(1):34–57

    Article  Google Scholar 

  • Krýza O, Lexa O, Schulmann K, Guy A, Gapais D, Cosgrove J, Xiao W (2021) Oroclinal buckling and associated lithospheric-scale material flow—insights from physical modelling: implication for the Mongol-Hingan orocline. Tectonophysics 800:228712

    Article  Google Scholar 

  • Li J, He Z, Mo S, Zheng Q (1999) The late Mesozoic orogenic processes of Mongolia-Okhotsk orogen: evidence from field investigations into deformation of the Mohe area, NE China. J Geosci Res NE Asia 2(2):172–178

    Google Scholar 

  • Li TD, Daukeev SZ, Kim BC, Tomurtogoo O, Petrov OV (2008) Atalas of geological maps of central asia and adjacent areas. Geological Publishing House, Beijing

    Google Scholar 

  • Li Y, Xu WL, Wang F, Tang J, Zhao S, Guo P (2017) Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna massif, NE China: implications for the early evolution of the Mongol-Okhotsk tectonic regime. J Asian Earth Sci 144:205–224

    Article  Google Scholar 

  • Liu Y, Nie F, Jiang S, Xue J, Hou W, Yun F (2010a) The geochronology and geochemical features of ore-hosting granite in the Aryn nuur Molybdenum Deposit, Mongolia. Acta Geol Sin 31:343–349

    Google Scholar 

  • Liu SA, Li SG, He YS, Huang F (2010b) Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization. Geochim Cosmochim Acta 74:7160–7178

    Article  Google Scholar 

  • Liu H, Li Y, He H, Huangfu P, Liu Y (2018) Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing’an massifs (NE China). Lithos 304–307:347–361

    Article  Google Scholar 

  • Ludwig KR (2001) Squid 1.03 a user's manual. Berkeley Geochronology Center Special Publication No. 2

  • Ludwig KR (2003) User's manual for isoplot 3.0. a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4

  • Lytwyn J, Lockhart S, Casey J, Kusky T (2000) Geochemistry of near-trench intrusives associated with ridge subduction, Seldovia Quadrangle, southern Alaska. J Geophys Res Solid Earth 105:27957–27978

    Article  Google Scholar 

  • Machowiak K, Stawikowski W (2012) The Baga-Gazriin Chuluu A-type granites of Central Mongolia compared with other igneous bodies nearby: a geochemical approach. Geol Q 56:457–474

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirwall MF (2006) Adakites without slab melting: high pressure processing of basaltic island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Marinov NA, Zonenshain LP, Blagonravov VA (1973) Geology of the Mongolia People’s Republic. 2. Magmatism, Metamorphism, Tectonics Nedra, Moscow, p 1–782 (in Russian)

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Mazukabzov AM, Donskaya TV, Gladkochub DP, Paderin IP (2010) The late Paleozoic geodynamics of the west Transbaikalian segment of the central Asian fold belt. Russ Geol Geophys 51:482–491

    Article  Google Scholar 

  • Metelkin DV, Vernikovsky VA, Kazansky AYu, Wingate MTD (2010) Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Res 18:400–419

    Article  Google Scholar 

  • Miao LC, Baatar M, Zhang FQ, Anaad C, Zhu MS, Yang SH (2016) Cambrian Kherlen ophiolite in northeastern Mongolia and its tectonic implications: SHRIMP zircon dating and geochemical constraints. Lithos 261:128–143

    Article  Google Scholar 

  • Miao LC, Zhang FQ, Baatar M, Zhu MS, Anaad C (2017) SHRIMP zircon U-Pb ages and tectonic implications of igneous events in the Ereendavaa metamorphic terrane in NE Mongolia. J Asian Earth Sci 144:243–260

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma igneous rock system. Earth- Sci Rev 37:215–224

    Article  Google Scholar 

  • Mitchell AL, Grove TL (2015) Melting the hydrous, subarc mantle: the origin of primitive andesites. Contrib Mineral Petrol 170:1–23

    Google Scholar 

  • Munkhtsengel B (2007) Magmatic and mineralization processes of the Erdenetiin Ovoo porphyry copper-molybdenum deposit and environmental assessment, Northern Mongolia: Japan, Tohoku University. Unpublished Ph.D. thesis, 1747-0765

  • Nagibina MS (1963) Tectonics and magmatism of the Mongolia-Okhotsk Fold Belt. USSR Academy Press, Moscow, p 464 (in Russian)

    Google Scholar 

  • Orolmaa D, Erdenesaihan G, Borisenko AS, Fedoseev GS, Babich VV, Zhmodik SM (2008) Permian-Triassic granitoid magmatism and metallogeny of the Hangayn (central Mongolia). Russ Geol Geophys 49(7):534–544

    Article  Google Scholar 

  • Pallister JS, Clynne MA, Wright HM, Van Eaton AR, Vallance JW, Sherrod DR, Kokelaar BP (2017) Field-trip guide to Mount St. Helens, Washington-An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater (2917–5022-D). USGS Sci Inv Rep, Reston

  • Parfenov LM, Popeko LI, Tomurtogoo O (2001) Problems of tectonics of the Mongol-Okhotsk orogenic belt. Geol Pac Ocean 16:797–830

    Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophy Geosy 11:Q0AA06

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pirajno F, Mao JW, Zhang ZC, Zhang ZH, Chai FM (2008) The association of mafic- ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J Asian Earth Sci 32:165–183

    Article  Google Scholar 

  • Reichow MK, Litvinovsky BA, Parrish RR, Saunders AD (2010) Multi-stage emplacement of alkaline and peralkaline syenite–granite suites in the Mongolian-Transbaikalian Belt, Russia: evidence from U-Pb geochronology and whole rock geochemistry. Chem Geol 273:120–135

    Article  Google Scholar 

  • Ren Q, Zhang S, Wu H, Liang Z, Miao X, Zhao H, Li H, Yang T, Pei J, Davis GA (2016) Further paleomagnetic results from the ~155 Ma Tiaojishan Formation, Yanshan belt, North China, and their implications for the tectonic evolution of the Mongol-Okhotsk suture. Gondwana Res 35:180–191

    Article  Google Scholar 

  • Ren Q, Zhang SH, Wu YQ, Yang TS, Gao YJ, Turbold S, Zhao HQ, Wu HC, Li HY, Fu HR (2018) New late jurassic to early cretaceous paleomagnetic results from north China and southern Mongolia and their implications for the evolution of the Mongol-Okhotsk suture. J Geophys Res Solid Earth 123:10370–10398

    Article  Google Scholar 

  • Richards J, Kerrich R (2007) Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol 102:1–40

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Gao S, Holland HD, Turekian KK (eds) The crust, 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. Treatise Geochem 3:1–51

    Article  Google Scholar 

  • Sengör AMC, Natal’in BA, Burtman US (1993) Evolution of the Altaid tectonic collage and paleozoic crustal growth in Eurasia. Nature 364:209–304

    Article  Google Scholar 

  • Shao J, Li YF, Zhou YH, Wang HB, Zhang J (2015) Neo-Archaean magmatic event in Erguna Massif of Northeast China: evidence from the zircon LA-ICP-MS dating of the gneissic monzogranite from the drill. J Jilin Univ 45:364–373 (in Chinese with English abstract)

    Google Scholar 

  • She HQ, Liang YW, Li JW, Guan JD, Zhang DQ, Yang YC, Xiang AP, Jin J, Tan G, Zhang B (2011) The Early-Mesozoic magmatic activity at Moerdaoga district in Inner Mongolia and its geodynamic implication. J Jilin Univ 41:1831–1864 (in Chinese with English abstract)

    Google Scholar 

  • She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G, Zhang B (2012) U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol Sin 28(2):571–594 (in Chinese with English abstract)

    Google Scholar 

  • Sheldrick TC, Barry TL, Millar IL, Barfod DN, Halton AM, Smith DJ (2020) Evidence for southward subduction of the Mongol-Okhotsk oceanic plate: implications from Mesozoic adakitic lavas from Mongolia. Gondwana Res 79:140–156

    Article  Google Scholar 

  • Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35

    Article  Google Scholar 

  • Smirnova YN, Sorokin A, Popeko L, Kotov A, Kovach VP (2017) Geochemistry and provenances of the Jurassic terrigenous rocks of the Upper Amur and Zeya-Dep troughs, eastern Central Asian fold belt. Geochem Int 55(2):163–183

    Article  Google Scholar 

  • Soesoo A (2000) Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia. J Geol Soc Lond 157:135–149

    Article  Google Scholar 

  • Sorokin AA, Kotov AB, Kudryashov NM, Kovach VP (2005) Late Paleozoic Urusha magmatic complex in the southern framing of the Mongolia-Okhotsk Belt (Amur Region): age and geodynamic setting. Petrology 13(6):596–610

    Google Scholar 

  • Sorokin AA, Zaika VA, Kovach VP, Kotov AB, Xu W, Yang H (2020) Timing of closure of the eastern Mongol-Okhotsk Ocean: Constraints from U-Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Res 81:58–78

    Article  Google Scholar 

  • Sotnikov VI, Ponomarchuk VA, Berzina AP, Travin AV (1995) Geochronological borders of magmatism of Cu-Mo-porphyry Erdenetuin-Obo deposit (Mongolia). Geol Geofiz 36:78–89

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society Special Publications, London, pp 313–345

    Google Scholar 

  • Sun WD, Ling MX, Chung SL, Ding X, Yang XY, Liang HY, Fan WM, Goldfarb R, Yin QZ (2012) Geochemical constraints on adakites of different origins and copper mineralization. J Geol 120:105–120

    Article  Google Scholar 

  • Sun DY, Gou J, Wang TH, Ren YS, Liu YJ, Guo HY, Liu XM, Hu ZC (2013a) Geochronological and geochemical constraints on the Erguna massif basement, NE China—subduction history of the Mongol-Okhotsk oceanic crust. Int Geol Rev 55(14):1801–1816

    Article  Google Scholar 

  • Sun LX, Ren BF, Zhao FQ, Ji SP, Geng JZ (2013b) Late Paleoproterozoic magmatic records in Eerguna massif: Evidence from the zircon U-Pb dating of granitic gneisses. Geol Bull China 32:341–352 (in Chinese with English abstract)

    Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44

    Article  Google Scholar 

  • Tang J, Xu WL, Wang F, Wang W, Xu MJ, Zhang YH (2013) Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Res 224:597–611

    Article  Google Scholar 

  • Tang J, Xu WL, Wang F, Wang W, Xu MJ, Zhang YH (2014) Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos 184:1–16

    Article  Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Li Y (2015) Geochronology, geochemistry, and deformation history of Late Jurassic–Early Cretaceous intrusive rocks in the Erguna Massif, NE China: constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk suture belt. Tectonophysics 658:91–110

    Article  Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Wang W (2016) Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res 31:218–240

    Article  Google Scholar 

  • Tomurtogoo O (1997) A new tectonic scheme of the Paleozoides in Mongolia. In: Zhaqin X, Yufeng R, Xiaoping Q (eds) Proceedings of the 30th international geological congress. CRC, Boca Raton, p 75–82

  • Tomurtogoo O, Windley BF, Kröner A, Badarch G, Liu DY (2005) Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk Ocean, suture and orogen. J Geol Soc 162(1):125–134

    Article  Google Scholar 

  • Tsukada K, Nuramkhaan M, Purevsuren N, Kabashima T, Kondo T, Gantumur O, Hasegawa H, Yamamoto K (2018) Permian adakitic magmatism in the Khanui Group, Northern Mongolia—Late Paleozoic slab-melting of subducted oceanic plate beneath the “Siberian continent.” J Geodyn 121:49–63

    Article  Google Scholar 

  • Tsygankov AA, Khubanov VB, Udoratina OV, Coble MA, Burmakina GN (2021) Alkaline granitic magmatism of the Western Transbaikalia: petrogenetic and geodynamic implications from U-Pb isotopic–geochronological data. Lithos 390–391:106098. https://doi.org/10.1016/j.lithos.2021.106098

    Article  Google Scholar 

  • Umeda K, Purevsuren N, Tsukada K, Altansukh L, Nadmid B, Sodnom K, Nuramkhaan M, Kabashima T, Kondo T (2022) Permian-Triassic adakitic igneous activity at Northern Mongolia: Implication for Permian-Triassic subduction system at the Siberian continental margin. J Geodyn 151:101918. https://doi.org/10.1016/j.jog.2022.101918

    Article  Google Scholar 

  • Van der Voo R, van Hinsbergen DJ, Domeier M, Spakman W, Torsvik TH (2015) Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: a paleomagnetic and seismological-tomographic analysis. Geol Soc Am Spec Pap 513:589–606

    Google Scholar 

  • Visonà D, Lombardo B (2002) Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos 62:125–150

    Article  Google Scholar 

  • Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33:465–468

    Article  Google Scholar 

  • Wang Q, Xu JF, Jian P, Bao ZW, Zhao Z, Li CF, Xiong LG, Ma JL (2006) Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: implications for the genesis of porphyry copper mineralization. J Petrol 47(1):119–144

    Article  Google Scholar 

  • Wang XX, Wang T, Castro A, Pedreira R, Lu XX, Xiao QH (2011) Triassic granitoids of the Qinling orogen, central China: genetic relationship of enclaves and rapakivi-textured rocks. Lithos 126:369–387

    Article  Google Scholar 

  • Wang W, Xu WL, Wang F, Meng E (2012) Zircon U-Pb chronology and assemblages of Mesozoic granitoids in the Manzhouli-Erguna area, NE China: constraints on the regional tectonic evolution. Geol J Chin Univ 18(1):88–105 (in Chinese with English abstract)

    Google Scholar 

  • Wang TH, Zhang SY, Sun DY, Gou J, Ren YS, Wu PF, Liu XM (2014) Zircon U-Pb ages and Hf isotopic characteristics of Mesozoic granitoids from southern Manzhouli, inner Mongolia. Glob Geol 33(1):26–38 (in Chinese with English abstract)

    Google Scholar 

  • Wang T, Tong Y, Xiao WJ, Guo L, Windley BF, Donskaya T, Li S, Narantsetseg T, Zhang JJ (2022) Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age-data. Natl Sci Rev 9:nwa210

    Article  Google Scholar 

  • Wanke M, Karakas O, Bachmann O (2019) The genesis of arc dacites: the case of Mount St. Helens, WA. Contrib Mineral Petrol 174:7

    Article  Google Scholar 

  • Watanabe Y, Stein HJ (2000) Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Econ Geol 95:1537–1542

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. In: Green DH (ed) Experimental petrology related to extreme metamorphism. Tectonophysics 43:7–22

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao W, Kroner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc Lond 164:31–47

    Article  Google Scholar 

  • Wu G (2005) Metallogenic setting and metallogenesis of nonferrous-precious metals in northern Da Hinggan Moutain. Dissertation, Jilin University, Changchun (in Chinese with English abstract)

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30

    Article  Google Scholar 

  • Xiao W, Windley BF, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H (2015) A tale of amalgamation of three permo-triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci 43:477–507

    Article  Google Scholar 

  • Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB, Wang W (2013) Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci 74:167–193

    Article  Google Scholar 

  • Xu J, Xia XP, Wang Q, Spencer CJ, Lai CK, Ma JL, Zhang L, Cui ZX, Zhang WF, Zhang YQ (2021) Pure sediment-derived granites in a subduction zone. Geol Soc Am Bull 134(3–4):599–615

    Google Scholar 

  • Yanshin AL (ed) (1974) Tectonics of Mongolia. Nauka, Moscow, p 283 (in Russian)

  • Yarmolyuk VV, Kovalenko VI, Sal’nikova EB, Budnikov SV, Kovach VP, Kotov AB, Ponomarchuk VA (2002) Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia-Transbaikal province. Geotectonics 36:293–311

    Google Scholar 

  • Yi ZY, Meert JG (2020) A closure of the Mongol-Okhotsk ocean by the Middle Jurassic: reconciliation of paleomagnetic and geological evidence. Geophys Res Lett 47:e2020GL088235

    Article  Google Scholar 

  • Yun F, Liu YF, Jiang SH, Bai DM (2010) Zircon SHRIMP U-Pb dating of the alkaline syenite stock in the khuld rare earth element mineralized district of central-south Mongolia and its geological implications. Acta Geosci Sin 31:365–372

    Google Scholar 

  • Zaika VA, Sorokin AA (2020) Age and sources of Dzhagdy Terrane metasedimentary rocks in the Mongol-Okhotsk Fold Belt: detrital zircon U-Pb and Lu–Hf isotopic data. Russ J Pac Geol 14:20–31

    Article  Google Scholar 

  • Zaika VA, Sorokin AA, Xu B, Kotov AB, Kovach VP (2018) Geochemical features and sources of metasedimentary rocks of the western part of the Tukuringra Terrane of the Mongol-Okhotsk Fold Belt. Stratigr Geol Correl 26(2):157–178

    Article  Google Scholar 

  • Zaika VA, Sorokin AA, Kovach VP, Sorokin AP, Kotov AB (2019) Age and sources of Detrital Zircons from Jurassic Conglomerates of Strelka Depression (Northern Framing of the Mongol-Okhotsk Fold Belt). Dokl Earth Sci 485:372–375

    Article  Google Scholar 

  • Zaika VA, Sorokin AA, Kovach VP, Kotov AB (2020) Geochemistry of metasedimentary rocks, sources of clastic material and the tectonic nature of the Mesozoic depressions of the northern framing of the eastern part of the Mongol-Okhotsk fold belt. Russ Geol Geophys 61:286–302

    Article  Google Scholar 

  • Zhao P, Xu B, Jahn BM (2017) The Mongol-Okhotsk Ocean subduction-related Permian peraluminous granites in northeastern Mongolia: constraints from zircon U-Pb ages, whole-rock elemental and Sr-Nd-Hf isotopic compositions. J Asian Earth Sci 144:225–242

    Article  Google Scholar 

  • Zhou H, Zhao GC, Han YG, Zhang DH, Qian L, Enkh-Orshikh O, Zhao Q, Pei XZ (2021) The Late Carboniferous to Early Permian high silica magmatism in the Southern Mongolia: Implications for tectonic evolution and continental growth. Gondwana Res 97:34–50

    Article  Google Scholar 

  • Zhu MS, Baatar M, Miao LC, Anaad C, Zhang FQ, Yang SH, Li YM (2014) Zircon ages and geochemical compositions of the Manlay ophiolite and coeval island arc: implications for the tectonic evolution of South Mongolia. J Asian Earth Sci 96:108–122

    Article  Google Scholar 

  • Zhu MS, Zhang FQ, Miao LC, Baatar M, Anaad C, Yang SH, Li XB (2016) Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia: implications for the tectonic evolution of Mongol-Okhotsk Ocean. J Asian Earth Sci 122:41–57

    Article  Google Scholar 

  • Zhu MS, Zhang FQ, Fan JJ, Miao LC, Baatar M, Anaad C, Yang SH, Li XB, Ganbat A (2017) Late Carboniferous bimodal volcanic rocks and coeval A-type granite in the Suman Khad area, Southwest Mongolia: implications for the tectonic evolution. J Asian Earth Sci 144:54–68

    Article  Google Scholar 

  • Zhu MS, Zhang FQ, Miao LC, Baatar M, Anaad C, Yang SH, Li XB (2018) The Late Carboniferous Khuhu Davaa ophiolite in northeastern Mongolia: implications for the tectonic evolution of the Mongol-Okhotsk Ocean. Geol J 53:1263–1278

    Article  Google Scholar 

  • Zhu MS, Miao LC, Zhang FQ, Ganbat A, Baatar M, Anaad C, Yang SH, Wang ZL (2022) Carboniferous magmatic records of central Mongolia and its implications for the southward subduction of the Mongol-Okhotsk Ocean. Int Geol Rev. https://doi.org/10.1080/00206814.2022.2076161 (ahead-of-print)

    Article  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a Plate-Tectonic synthesis. American Geophysical Union (geodynamic series 21)

  • Zorin YA (1999) Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306:33–56

    Article  Google Scholar 

  • Zorin YA, Belichenko VG, Turutanov EK, Mazukabzov AM, Sklyarov EV, Mordvinova VV (1995) The East Siberia Transect. Int Geol Rev 37:154–175

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB 41000000) and the National Natural Science Foundation of China (grant nos. 42272262 and 42172241). We are grateful to Chun Yang, Mingzhu Ma, Liqin Zhou, Xiaochao Che, Chenghao Liu and Shuangrong Zhang for their supports of the analytical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshuai Zhu.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, F., Miao, L. et al. Permian–Triassic magmatic rocks in the Middle Gobi volcanic-plutonic belt, Mongolia: revisiting the scissor-like closure model of the Mongol-Okhotsk Ocean. Int J Earth Sci (Geol Rundsch) 112, 741–763 (2023). https://doi.org/10.1007/s00531-022-02271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02271-5

Keywords

Navigation