Skip to main content
Log in

Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution, and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate—a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 8 Ma have chemical compositions typical of ocean island basalts and intra-oceanic arcs. In contrast, younger igneous deposits contain abundant silicic rocks, which are significantly enriched in SiO2, alkalis, and light rare-earth elements and are geochemically similar to the average upper continental crust. Geophysical evidence (high Vp seismic velocities) also indicates a relatively thick (~40 km), addition of evolved igneous rocks to the CLIP. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes—either produced by crystallization or by partial melting of plutons near their solidi. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low oxygen fugacity, where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity, where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g., Izu-Bonin, Marianas) have chemical characteristics distinctly different from continental crust, whereas the NW Costa Rican silicic deposits have chemical characteristics nearly identical to the upper continental crust. The transition in NW Costa Rica from mafic oceanic arc and intra-oceanic magma to felsic, upper continental crust-type magma is governed by a combination of several important factors that may be absent in other arc settings: (1) thermal maturation of the thick Caribbean plateau, (2) regional or local crustal extension, and (3) establishment of an upper crustal reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acocella V, Funiciello F (2010) Kinematic setting and structural control of arc volcanism. Earth Planet Sci Lett 289:43–53

    Article  Google Scholar 

  • Alaniz-Alvarez SA, Nieto-Samaniego AF, Moran-Zenteno DJ, lba-Aldave L (2002) Ryolithic volcanism in extension zone associated with strike—slip tectonics in the Taxco region. J Volcanol Geo Res 118:1–14

    Article  Google Scholar 

  • Alvarado GE, Kussmaul S, Chiesa S, Guillot PY, Appel H, Wörner G, Rundle C (1992) Cuadro cronoestrátigrafico de las rocas ígneas de Costa Rica basado en dataciones radiométricas K-Ar y U-Th. J South Am Earth Sci 6:151–168

    Article  Google Scholar 

  • Alvarado GE, Denyer P, Gazel E (2009) Endeavor research into evolving paridigms around ophiolites: the case of the oceanic igneous complexes of Costa Rica. Revista Geológica de América Central 40:49–73

    Google Scholar 

  • Andreas D (2005) The bagaces formation in the Guanacaste Province. Refined stratigraphy and petrology Albrechts-Universität, Costa Rica

    Google Scholar 

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203(3–4):937–955

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Arazzi D, Fiorletta M, Civelli S, Chiesa S, Alvarado GE (2004) Geología de la hoja Cañas. Revista Geológica de América Central 30:215–223

    Google Scholar 

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body; a window into the evolution of large-volume silicic magma systems. Geology 31(9):789–792

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49(12):2277–2285. doi:0.1093/petrology/egn068

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98(2):224–256

    Article  Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73(1–2):57–61

    Google Scholar 

  • Barboza SA, Bergantz GW (2000) Metamorphism and anatexis in the mafic complex contact aureole, Ivrea Zone, Northern Italy. J Petrol 41(8):1307–1327

    Article  Google Scholar 

  • Barnes CG, Yoshinobu AS, Prestvik T, Nordgulen O, Karlsson HR, Sundvoll B (2002a) Mafic magma intraplating: anatexis and hybridization in arc crust, Bindal Batholith, Norway. J Petrol 43(12):2171–2190

    Article  Google Scholar 

  • Barnes CG, Yoshinobu AS, Prestvik T, Nordgulen O, Karlsson HR, Sundvoll B (2002b) Mafic magma intraplating: anatexis and hybridization in arc crust, Bindal Batholith, Norway. J Petrol 43:2171–2190

    Article  Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3–4):197–213

    Article  Google Scholar 

  • Baumgartner PO, Flores K, Bandini AN, Girault F, Cruz D (2008) Upper Triassic to Cretaceous radiolaria from Nicaragua and northern Costa Rica—the Mesquito composite oceanic terrane. Ofioliti 33:1–19

    Google Scholar 

  • Bea F (2010) Crystallization dynamics of granite magma chambers in the absence of regional stress: multiphysics modeling with natural examples. Journal of Petrology 51(7):1541–1569

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401

    Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Dover Publications, New York

    Google Scholar 

  • Brown M (2002) Retrograde processes in migmatites and granulites revisited. J Metamorph Geol 20(1):25–40

    Article  Google Scholar 

  • Brown M, Averkiny YA, McLellan EL (1995) Melt segregation in migmatites. J Geophys Res 100:15655–15679

    Article  Google Scholar 

  • Cambray FW, Vogel TA, Mills JG (1995) Origin of compositional heterogeneities in tuffs of the timber mountain-group—the relationship between magma batches and magma transfer and emplacement in an extensional environment. J Geophys Res-Solid Earth 100(B8):15793–15805

    Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99° W) Mexico. Contrib Mineral Petrol 143(6):641–663

    Article  Google Scholar 

  • Chiesa S (1991) El flujo de pómez biotítica de río Liberia (Guanacaste), Costa Rica. América Central. Revista Geológical América Central 12:73–83

    Google Scholar 

  • Chiesa S, Corello M, Moroa O (1987) Geología de la Meseta ignimbrítica de Santa Rosa, Guanacaste, Costa Rica. Instituto Coastarricense de Electricidad, San Jose, p 60

    Google Scholar 

  • Chiesa S, Civelli G, Gillot PY, Mora O, Alvarado GE (1992) Rocas piroclasticas associadas con la formación de la Caldera de Guayabo. Revista Geológica de América Central 14:59–75

    Google Scholar 

  • Christiansen EH (2005) Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites. Geol Mag 142:669–681

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas; petrogenetic issues, models and evidence. Earth-Sci Rev 61(1–2):1–18

    Article  Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite; the Violet Town Volcanics. Contrib Mineral Petrol 88(4):354–371

    Article  Google Scholar 

  • Criss J (1980) Fundamental parameters calculations on a laboratory microcomputer. Adv X-ray Anal 23:93–97

  • Davidson JP, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology. Geology 35(9):787–790

    Article  Google Scholar 

  • Deering CD, Bachmann O (2010) Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet Sci Lett 297(1–2):324–331

    Google Scholar 

  • Deering CD, Vogel TA, Patino LC, Alvarado GE (2007) Origin of distinct silicic magma types from the Guachipelín Caldera, NW Costa Rica: evidence for magma mixing and protracted subvolcanic residence. J Volcanol Geo Res. doi:10.1016/j.jvolgeores.2007.05.004

  • Deering CD, Cole JW, Vogel TA (2008) A rhyolite compositional continuum governed by lower crustal source conditions in the Taupo Volcanic Zone, New Zealand. J Petrol 49(12):2245–2276. doi:10.1093/petrology/egn067

    Google Scholar 

  • Deering CD, Gravley DM, Vogel TA, Cole JW, Leanard GS (2010) Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo Volcanic Zone, New Zealand. Contrib Mineral Petrol 160:609–629

    Google Scholar 

  • DeMets CR, Gordon G, Argus DF, Stein S, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. doi:10.1029/94GL02118

    Google Scholar 

  • Dengo G (1962) Tectonic-igneous sequence in Costa Rica. In: Engel AEJ, James HL, Leonard BF (eds) Petrologic studies: a volume to honor AF Buddington. Geological Society of America Special Paper, Boulder, pp 133–161

    Google Scholar 

  • Denyer P, Montero W, Alvarado GE (2003) Atlas tectonico de Costa Rica. University of Costa Rica, San Jose

    Google Scholar 

  • Druitt TH, Bacon CR, Brown PE (1988) Compositional zonation and cumulus processses in the Mount Mazama magma chamber, Crater Lake, Oregon. In: Transactions of the royal society of Edinburgh: earth sciences, vol 79. Royal Society of Edinburgh, Edinburgh, pp 289–297

  • Drummond MS, Bordelon M, Deboer JZ, Defant MJ, Bellon H, Feigenson MD (1995) Igneous petrogenesis and tectonic setting of plutonic and volcanic-rocks of the Cordillera De Talamanca, Costa-Rica Panama, Central-American arc. Am J Sci 295(7):875–919

    Article  Google Scholar 

  • Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:687–690. doi:10.1130/G30831.1

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation; a stochastic framework for the evaluation of basalt-crust interaction. J Petrol 46:2167–2195

    Article  Google Scholar 

  • Gans PB, MacMillan I, Alvarado GE, Perez W (2002) Neogene evolution of the Costa Rican Arc. Abstracts with programs, vol 34. Geological Society of America. pp 224–212

  • Gazel E, Carr MJ, Hoernle K, Feigenson MD, Szymanski D, Hauff F, van den Bogaard P (2009) Galapagos-OIB signature in southern Central America: mantle refertilization by arc—hot spot interaction. Geochem Geophys Geosyst 10 doi:10.1029/2008gc002246

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957–1039

    Article  Google Scholar 

  • Gillot PY, Chiesa S, Alvarado GE (1994) Chronostratigraphy and evolution of the Neogene-Quaternary volcanism in north Costa Rica: the Arenal volcano-structural frame work. Revista Geológica de América Central 17:45–53

    Google Scholar 

  • Greene AR, Debari SM, Kelemen PB, Blusztajn JS, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna Arc section, South-Central Alaska. J Petrol 47:1051–1093

    Article  Google Scholar 

  • Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P (2007) Reconstruction of theTalkeetna intraoceanic arc of Alaska through thermobarometry. J Geophys Res 113:B03204. doi:0.1029/2007JB005208

    Article  Google Scholar 

  • Hanson RB, Glazner AF (1995) Thermal requirements for extensional emplacement of granitoids. Geology 23(3):213–216

    Article  Google Scholar 

  • Hauff F, Hoernle K, Tilton G, Graham DW, Kerr AC (2000a) Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean large igneous province. Earth Planet Sci Lett 174(3–4):247–263

    Article  Google Scholar 

  • Hauff F, Hoernle K, van den Bogaard P, Alvarado GE, Garbe-Schönberg D (2000b) Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochem Geophys Geosyst 1:16–28. doi:10.1029/1999GC000020

    Google Scholar 

  • Hildreth W, Fierstein J (2000a) Katmai volcanic cluster, the great eruption 1912. Geol Soc Am Bull 112(10):1594–1620

    Article  Google Scholar 

  • Hildreth W, Fierstein J (2000b) Katmai volcanic cluster and the great eruption of 1912

  • Huber C, Bachmann O, Manga M (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet Sci Lett 283(1–4):38–47

    Article  Google Scholar 

  • Hughes GR, Mahood GA (2008) Tectonic controls on the nature of large silicic calderas in volcanic arcs. Geology 36(8):627–630

    Article  Google Scholar 

  • Hughes GR, Mahood GA (2011) Silicic calderas in arc settings: characteristics, distribution, and tectonic controls. Geol Soc Am Bull 123:1577–1595. doi:10.1130/B30232

    Article  Google Scholar 

  • Jagoutz E, Müntener O, Ulmer P, Pettke T, Burg J-P, Dawood H, Hussain S (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J Petrol 48:1895–1953

    Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381. doi:10.1007/s00445-003-0277-y

    Article  Google Scholar 

  • Jezek A, Noble DC (1978) Natural hydration and ion exchange of obsidian: an electron microprobe study. Am Mineral 63:266–273

    Google Scholar 

  • Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144(3–4):577–589

    Article  Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg-number andesites and the continental-crust. Contrib Mineral Petrol 120(1):1–19

    Article  Google Scholar 

  • Kelemen PB, Yogodzinski GM, Scholl DW (2003) Along strike variation in lavas of the Aleutian island arc: implications for the genesis of high Mg# andesite and the continental crust. In: Eiler J (ed) Inside the subduction factory, volume geophysical monograph, vol 138. Am Geophys Union, Washington, pp 223–276

    Chapter  Google Scholar 

  • Koyaguchi T, Kaneko K (1999) A two-stage thermal evolution model of magmas in continental crust. J Petrol 40(2):241–254

    Article  Google Scholar 

  • Linkimer L, Beck SL, Schwartz SY, Zandt G, Levin V (2010) Nature of crustal terranes and the Moho in northern Costa Rica from receiver function analysis. Geochem Geophys Geosyst 11:1–24. doi:10.1029/2009GC002795

    Google Scholar 

  • MacKenzie LG, Abers A, Fischer KM, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9:221–231. doi:10.1029/2008GC001991

    Google Scholar 

  • Mansor S (2005) The post-carbonal units of the bagaces formation: the Meseta de Santa Rosa. Chrisitian Albrechts University, National Park Santa Rosa, Costa Rica

  • Marquardt M (2005) Refined stratigraphy of the Bagaces formation. Santa Christian Albrechts University, Rosa National Park, Costa Rica

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98

    Article  Google Scholar 

  • Mills JG, Saltoun BW, Vogel TA (1997) Magma batches in the timber mountain magmatic system, southwestern Nevada volcanic field, Nevada, USA. J Volcanol Geoth Res 78(3–4):185–208

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274(4):321–355

    Google Scholar 

  • Morgan JP, Ranero CR, Vannucchi P (2008) Intra-arc extension in Central America: links between plate motions, tectonics, volcanism, and geochemistry. Earth Planet Sci Lett 272:365–371

    Article  Google Scholar 

  • Pichavant M, Kontak DJ, Briqueu L, Valencia-Herrera J, Clark AH (1988a) The Miocene-Pliocene Macusani Volcanics, SE Peru; 2, geochemistry and origin of a felsic peraluminous magma. Contrib Mineral Petrol 100(3):325–338

    Article  Google Scholar 

  • Pichavant M, Kontak DJ, Valencia-Herrera J, Clark AH (1988b) The Miocene-Pliocene Macusani Volcanics, SE Peru; 1, mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib Mineral Petrol 100(3):300–324

    Article  Google Scholar 

  • Pichavant M, Montel J-M, Brown PE (1988c) Petrogenesis of a two-mica ignimbrite suite; the Macusani Volcanics, SE Peru. (Transactions of the Royal Society of Edinburgh: earth sciences, vol 79). Royal Society of Edinburgh, Edinburgh, pp 197–207

    Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66. doi:10.1007/s00410-009-0465-7

    Google Scholar 

  • Riley TR, Leat PT, Pankhurst RJ, Harris C (2001) Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. J Petrol 42(6):1043–1065

    Article  Google Scholar 

  • Rogers RD, Karason H, van der Hilst R (2002) Epeirogenic uplift above a detached slab in northern Central America. Geology 30(11):1031–1034

    Article  Google Scholar 

  • Rogers RD, Mann CP, Emmet PA (2007) Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data. Special Paper Geol Soc Am 428:65–88. doi:10.1130/2007.2428(04)

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation and interpretation. Addison Wesley Longman Limited, Harlow

    Google Scholar 

  • Rudnick RL, Gao S (2005) Composition of the continental crust. In: Rudnick RL (ed) The crust, vol 3. Elsevier, Kidlington, pp 1–64

    Google Scholar 

  • Sallares V, Danobeitia JJ, Flueh ER (2000) Seismic tomography with local earthquakes in Costa Rica. Tectonophysics 329(1–4):61–78

    Article  Google Scholar 

  • Sallares V, Danobeitia JJ, Flueh ER (2001) Lithospheric structure of the Costa Rican Isthmus: effects of subduction zone magmatism on an oceanic plateau. J Geophys Res-Solid Earth 106(B1):621–643

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661

    Google Scholar 

  • Smith IEM, Stewart RB, Price RC (2003) The petrology of a large intra-oceanic silicic eruption; the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. J Volcanol Geoth Res 124(3–4):173–194

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publications, London, pp 313–345

    Google Scholar 

  • Szymanski DW (2007) Magmatic evolution of ignimbrites in the Bagaces formation Guanacaste Province, Costa Rica. PhD. Michigan State University

  • Tamura Y, Tatsumi Y (2002) Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu-Bonin arc. J Petrol 43(6):1029–1047

    Article  Google Scholar 

  • Tamura Y, Gill JB, Tollstrup D, Kawabata H, Shukuno H, Chang Q, Miyazaki T, Takahashi T, Hirahara Y, Kodaira S, Ishizuka O, Suzuki T, Kido Y, Fiske RS, Tatsumi Y (2009) Silicic magmas in the Izu-Bonin oceanic arc and implications for crustal evolution. J Petrol 50(4):685–723

    Article  Google Scholar 

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19:1–71

    Article  Google Scholar 

  • Vigneresse JL (1995) Control of granite emplacement by regional deformation. Tectonophysics 249:219–237

    Google Scholar 

  • Vogel TA, Patino LC, Alvarado GE, Gans PB (2004) Silicic ignimbrites within the Costa Rican volcanic front: evidence for the formation of continental crust. Earth Planet Sci Lett 226(1–2):149–159

    Article  Google Scholar 

  • Vogel TA, Patino LC, Eaton JK, Valley JW, Rose EF, Alvarado GE, Viray EL (2006) Origin of silicic magmas along the Central American volcanic front: genetic relationship to mafic melts. J Volcanol Geo Res 156:206–228

    Google Scholar 

  • Vogel TA, Patino LC, Alvarado GE, Rose WI (2007) Petrogenesis of Ignimbrites. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources and hazards chapter, vol. pp 591–618

  • Wade JA, Plank T, Stern RJ, Tollstrup DL, Gill JB, O’Leary JC, Eiler JM, Moore RB, Woodhead JD, Trusdell FA, Fischer TP, Hilton DR (2005) The May 2003 eruption of Anatahan Volcano, Mariana Islands; geochemical evolution of a silicic island-arc volcano. J Volcanol Geo Res 146(1–3):139–170. doi:10.1016/j.jvolgeores.2004.11.035

    Google Scholar 

  • White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7(3):Q03010

    Google Scholar 

Download references

Acknowledgments

We greatly appreciate our many friends in Central America who made this project possible. We are especially appreciative of the many discussions with the participants of the Margins meetings in Costa Rica that helped focus our work. Olivier Bachmann, Tom Sisson, and Jorge Vazquez made helpful comments on earlier versions of this manuscript that improved the paper and clarified some of our interpretations. CDD was supported by the Royalty Research Fund from the University of Washington. The thoughtful reviews by Calvin Barnes and an anonymous reviewer are appreciated for helping us to focus our discussion, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad D. Deering.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 204 kb)

Supplementary material 2 (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deering, C.D., Vogel, T.A., Patino, L.C. et al. Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs. Contrib Mineral Petrol 163, 259–275 (2012). https://doi.org/10.1007/s00410-011-0670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0670-z

Keywords

Navigation