Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquake evidence during the younger Weichselian and Holocene

Abstract

Investigations at a construction site in Hamburg (NW Germany) exposed palaeoseismic structures from moderate to strong earthquakes. Based on the large size of large blowout clastic dykes being up to 2.0 m wide and 2.5 m high, as well as the occurrence of infill structures, erratics/rafts of up to 9 kg in weight, seismites s.s. and decimetre-scale folds or seismoslumps, the magnitude of the earthquakes could be in the order of up to M ≥ 6. This is significantly higher than previously assumed for prehistorical seismic events in NW Germany. The structures are assigned to earthquakes possibly related to NW–SE-oriented faults that are evident in Lidar and SAR surface interpretations. Organic material from blowout-related infill bowls, assumed to be synchronously formed collapse depressions, are analysed for 14C ages. The dates reveal ages between 31,500 and 1200 14C cal a BP, indicating five prehistoric earthquakes. Accordingly, three of these earthquakes occurred before and after the main Weichselian glaciation phase (ca. 31,350, 26,850 and 18,980 14C cal a BP), and two occurred during the Subatlantic (ca. 4900 and 1200 14C cal a BP). The Weichselian events indicate seismic activity in the ice marginal zone during or following interstadials/Dansgaard–Oeschger events, as well as suggesting that advancing ice sheets foster earthquakes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adam N, Gonzalez FR, Parizzi A, Liebhart W (2011) Wide area persistent scatterer interferometry: algorithms and examples. In: Proceedings of Fringe 2011 (ESA SP), pp 1–5

  2. Al Hseinat M, Hübscher C (2017) Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophysics 708:28–55

    Article  Google Scholar 

  3. Arnaud E (2011) The paleoclimatic significance of deformation structures in Neoproterozoic successions. Invited review paper for special issue on clastic sedimentology and the neoproterozoic glaciations. Sediment Geol 243–244:33–56

    Google Scholar 

  4. Audemard FA, Santis F (1991) Survey of liquefaction structures induced by recent moderate earthquakes. Bull Int Assoc Eng Geol 44:5–16

    Article  Google Scholar 

  5. Bahr A (1932) Frostgestauchte Böden im westlichen Schleswig-Holstein. Z dt Geol Ges 84:24–35

    Google Scholar 

  6. Baldschuhn R, Frisch U, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jb A 153, Hannover (BGR)

  7. Benediktsson ÍÖ, Schomacker A, Lokrantz H, Ingólfsson Ó (2009) The 1890 surge end moraine at Eyjabakkajö kull, Iceland: a re-assessment of a classic glaciotectonic locality. Quat Sci Rev 29(3):484–506

    Google Scholar 

  8. BGR—Bundesanstalt für Geowissenschaften und Rohstoffe (2016) Erdbebendatenbasis Deutschland. BGR, Stand: 25.10.2016 (unpubl)

  9. Brandes C, Winsemann J (2013) Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. Int J Earth Sci 102:2255–2274

    Article  Google Scholar 

  10. Brandes C, Polom U, Winsemann J (2011) Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Res 23:53–64

    Article  Google Scholar 

  11. Brandes C, Winsemann J, Roskosch J, Meinsen J, Tanner DC, Frechen M, Steffen H, Wu P (2012) Activity along the Osning thrust in Central Europe during the lateglacial: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62

    Article  Google Scholar 

  12. Brandes C, Steffen H, Bönnemann C, Plenefisch T, Gestermann N, Winsemann J (2014) Aktive Tektonik in Norddeutschland: glazial-isostatische Ausgleichsbewegungen und/oder Folgen der Erdöl/Erdgas-Förderung? Erdöl Erdgas Erdöl 130:138–143

    Google Scholar 

  13. Brodzikowski K, Haluszczak A (1987) Flame structures and associated deformations in Quaternary glaciolacustrine and glaciodeltaic deposits: examples from central Poland. Geol Soc Lond Special Publ 29(1):279–286

    Article  Google Scholar 

  14. Burbidge GH, French HM, Rust BR (1988) Water escape fissures resembling ice wedge casts in Late Quaternary subaqueous outwash near St. Hare, Quebec, Canada. Boreas 17:33–40

    Article  Google Scholar 

  15. Buurman N (2010) Charakterisierung von Zirkularstrukturen im geologischen Untergrund Hamburgs zur Abgrenzung verkarstungsgefährdeter Bereiche. Dissertation, University of Hamburg, Department Geowissenschaften, p 224

  16. Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seismol 11(4):473–487

    Article  Google Scholar 

  17. Cox RT, Lowe C, Hao Y, Mahan SA (2014) Use of small-scale liquefaction features to assess paleoseismicity: an example from the Saline River fault zone, Southeast Arkansas, USA. Front Earth Sci 17

  18. Dahm T, Heimann S, Bialowons W (2011) A seismological study of shallow weak earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution. Nat Hazards 58(3):1111–1134

    Article  Google Scholar 

  19. Davenport CA (1994) Geotechnical consequence of ground motion—hazard perspectives. Geol Mijnbouw 73:339–356

    Google Scholar 

  20. Demoulin A (1996) Clastic dykes in East Belgium—evidence for Upper Pleistocene strong earthquakes west of the Lower Rhine rift segment. J Geol Soc 153(5):803–810

    Article  Google Scholar 

  21. Druzhinina O, Bitinas A, Molodkov A, Kolesnik T (2017) Palaeoseismic deformations in the Eastern Baltic region (Kaliningrad District of Russia). Estonian J Earth Sci 66(3):119–129

    Article  Google Scholar 

  22. Dulce J-Chr (1982) Zur Anwendungsmöglichkeit linearanalytischer Fernerkundungsmethoden im Verbreitungsgebiet quartärer Ablagerungen am Beispiel Schleswig-Holsteins. Dissertation, University of Kiel, p 136

  23. Ehlers J Bunge D, Grube A, Kersting G, Kröger J, Moosmann L, Schröder M, Thieme W (2011a) Geologische Karte von Hamburg 1:25.000, Blatt 2326 Fuhlsbüttel. Ehlers J with input from. Geologisches Landesamt Hamburg, Hamburg

    Google Scholar 

  24. Ehlers J, Grube A, Stephan HJ, Wansa S (2011b) Pleistocene glaciations of North Germany—new results. Dev Quat Sci 15:149–162

    Google Scholar 

  25. Eissmann L (2002) Quaternary geology of eastern Germany (Saxony, Saxon-Anhalt, South Brandenburg, Thuringia), type area of the Elsterian and Saalian Stages in Europe. Quat Sci Rev 21:1275–1346

    Article  Google Scholar 

  26. Franke D, Hoffmann N (1997) Die regionale Stellung der externen variszischen Außenzone Nordostdeutschlands im Gesamtrahmen Mittel- und Westeuropas. Z Geol Wiss 25(3/4):375–412

    Google Scholar 

  27. French HM (2007) The Periglacial Environment. Wiley, Chichester

    Google Scholar 

  28. Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187

    Article  Google Scholar 

  29. Gregersen S, Voss PH (2014) Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years—earthquakes in Denmark? Solid Earth 5:109–118

    Article  Google Scholar 

  30. Grim S (2012) Abflusslose Senken—Instrumente in der Landschaftsanalyse und Indikatoren rezenter Krustenbewegungen. Dissertation, University of Mainz

  31. Grim S, Sirocko F (2012) Natural depressions on modern topography in Schleswig-Holstein (Northern Germany)—indicators for recent crustal movements or “only” kettle holes? Z dt Ges Geowiss 163(4):13

    Google Scholar 

  32. Gripp K (1920) Steigt das Salz zu Lüneburg, Langenfelde und Segeberg episodisch oder kontinuierlich? Jb Niedersächs Geol 13:1–41

    Google Scholar 

  33. Grube F (1974) Ingenieurgeologische Erkundung der Erdfälle im Bereich des Salzstockes Othmarschen-Langenfelde (Hamburg). In: International symposium Ingenieurgeol, T4-B7, Hannover

  34. Grube A (2018) Palaeoseismic structures in Quaternary sediments, related to an assumed Hercynian fault north of the Permian salt structure Peissen-Gnutz (NW Germany)—neotectonic activity from the Saalian to the Weichselian/Holocene. Geomorphology 328:15–27

    Article  Google Scholar 

  35. Grünthal G, Stromeyer D, Wylegalla K, Kind R, Wahlström R, Yuan X, Bock G (2008) The Mw 3.1–4.7 earthquakes in the southern Baltic Sea and adjacent areas in 2000, 2001 and 2004. J Seismol 12:413–429

    Article  Google Scholar 

  36. Hardt J (2017) Weichselian phases and ice dynamics of the Scandinavian ice sheet in northeast Germany. Dissertation, University of Berlin (Freie Universität), Department of Earth Sciences

  37. Hese F (2012) 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Dissertation, University of Kiel, p 154

  38. Hoffmann G, Reicherter K (2012) Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). Int J Earth Sci (Geol Rundsch) 101:351–363

    Article  Google Scholar 

  39. Houmark-Nielsen M (2010) Extent, age and dynamics of marine isotope stage 3 glaciations in the southwestern Baltic Basin. Boreas 39:343–359

    Article  Google Scholar 

  40. Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2015) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45

    Article  Google Scholar 

  41. Ihde 1, Steinberg J, Ellenberg J, Bankwitz E (1987) On recent vertical crustal movements derived from revellings within the territory of the G.D.R. Gerlands Beitr. Geophysik 206–217

  42. Illies H (1955) Pleistozäne Salzstockbewegung in Norddeutschland und ihre regionale Anordnung. Geol Rdsch 43:70–78

    Article  Google Scholar 

  43. Jäger K (2003) Fernerkundliche und linearanalytische Untersuchungen an tektonischen und geologischen Strukturen in Ostholstein. Diploma thesis, University of Mainz, p 58

  44. Jakobsen PR, Schack Pedersen SA (2008) Fracture valleys in central Jylland—a neotectonic feature. Geol Surv Denmark Greenland Bull 17:33–36

    Google Scholar 

  45. Janszen A (2012) Tunnel valleys: genetic models, sedimentary infill and 3D architecture. Proefscchrift Technical University Delft, Delft, p 203

    Google Scholar 

  46. Jaritz W (1980) Bemerkungen zur Geologie des präquartären Untergrundes in der Umgebung von Gorleben. Z dt Geol Ges 131:521–558

    Google Scholar 

  47. Johnston AC (1989) The effect of large ice sheets on earthquake genesis. In: Gregersen S, Basham PW (eds) Earthquakes at North-Atlantic passive margins: neotectonics and postglacial rebound. Kluwer, Dordrecht, pp 345–353

    Google Scholar 

  48. Koch E (1949) Die Geologischen Grundlagen der Grundwassergewinnung Hamburgs. 100 Jahre Hamburger Wasserwerke. Sonderheft DVGW Hannover

    Google Scholar 

  49. Kockel F (1995) Structural and palaeogeographical development of the German north sea sector. Beiträge Reg Geol Erde 26:96

    Google Scholar 

  50. Kronborg C, Bender H, Larsen G (1977) Tektonik som en mulig medvirkende årsag til daldannelsen i Midtjylland. In: Danmarks geologiske Undersøgelse år-bog, pp 63–76

  51. Kurzawa M (2003) The sedimentary record and rates of quaternary vertical tectonic movements in NW Poland. Quat Int 101–102:137–148

    Article  Google Scholar 

  52. Lagerbäck R (1991) Seismically deformed sediments in the Lansjärv area, Northern Sweden. In: SKB technical report 91-17, Svensk Kärnbränslehantering AB, Stockholm, p 58

  53. Lagerbäck R, Sundh M (2008) Early Holocene faulting and paleoseismicity in northern Sweden. Research paper C836 SGU, Uppsala

    Google Scholar 

  54. Larsen E, Mangerud J (1992) Subglacially formed clastic dykes. Sver Geol Unders 81:163–170

    Google Scholar 

  55. Lehné RJ (2005) Rezente Bodenbewegungspotenziale in Schleswig-Holstein (Deutschland)—Lokalisierung und Quantifizierung durch GIS-Analysen, seismische Interpretation, Fernerkundung, statistische Auswertung und Feldarbeit. Dissertation, University of Mainz, Fachbereich Chemie, Pharmazie und Geowissenschaften, p 190, Mainz

  56. Lehné RW, Sirocko F (2007) Recent movement potentials in Schleswig-Holstein (Germany) - cause and influence on the development of modern topography. Z dt Ges Geowiss 158(2):329–347

    Google Scholar 

  57. Lehné RW, Sirocko F (2010) Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig-Holstein) derived by GIS-based analysis of repeated precise levelling data. Z dt Ges Geowiss 161(2):175–188

    Google Scholar 

  58. Leydecker G (2011) Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008. Geol Jb E59:1–198

    Google Scholar 

  59. Leydecker G, Aichele H (1998) The seismogeographical regionalisation for Germany: the prime example of third-level regionalisation. Geol Jb E 55:85–98

    Google Scholar 

  60. Litt T, Behre KE, Meyer KD, Stephan HJ, Wansa S (2007) Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. E & G Quat Sci J 56(1–2):7–65

    Article  Google Scholar 

  61. Lowe DR (1975) Water escape structures in coarse grained sediments. Sedimentology 22:157–204

    Article  Google Scholar 

  62. Ludwig AO (1995) The surface of the Holsteinian interglacial sediments as a base level for reconstruction of vertical neotectonic movements in northern Germany. Tech Poszukiwan Geol 34(3):31–36

    Google Scholar 

  63. Ludwig AO, Schwab G (1995) Neogeodynamica Baltica—ein internationales Kartenprojekt (IGCP-Projekt Nr. 346). Brandenburg. Geowiss Beitr 2(2):47–57

    Google Scholar 

  64. Lüthgens C, Böse M, Krbetschek M (2009) Towards a new understanding of the last glacial maximum (LGM) in NE-Germany—results from optically stimulated luminescence (OSL) dating and their implications. Exploratory workshop on the frequency and timing of glaciations in northern Europe (including Britain) during the Middle and Late Pleistocene. Abstracts, pp 17–18, Berlin (FU)

  65. Lykke-Andersen H (1981) Indications of neotectonic features in Denmark. Z Geomorph NF 40:43–54

    Google Scholar 

  66. Marcussen I (1977) Deglaciation landscapes formed during the wasting of the late Middle Weichselian ice sheet in Denmark. Danmarks Geol Unders Raekke 110:72 pp

    Google Scholar 

  67. Meyer KD (1980) Quartäre Tektonik im Unterelbe-Gebiet? Z dt Geol Ges 131:530–546

    Google Scholar 

  68. Montenat C, Barrier P, d’Estevou PO, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sediment Geol 196:5–30

    Article  Google Scholar 

  69. Muir-Wood R (2000) Deglaciation seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quat Sci Rev 19:1399–1411

    Article  Google Scholar 

  70. Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Eng Geol 44:1–76

    Article  Google Scholar 

  71. Obermeier SF, Olson SM, Green RA (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76:209–234

    Article  Google Scholar 

  72. Pirrotta C, Barbano MS, Guarnieri P, Gerardi F (2007) A new dataset and empirical relationships between magnitude/intensity and epicentral distance for liquefactions in central-eastern Sicily. Ann Geophys 50(6):763–774

    Google Scholar 

  73. Pisarska-Jamroży M, Woźniak PP (2018) Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast. Poland Geomorphol. https://doi.org/10.1016/j.geomorph.2018.01.015

    Google Scholar 

  74. Pisarska-Jamroży M, Belzyt S, Börner A, Hoffmann G, Hüneke H, Kenzler M, Obst K, Rother H, Van Loon AJ (Tom) (2018) Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics. https://doi.org/10.1016/j.tecto.2018.08.004

  75. Preußische Landesaufnahme (1881) Blatt Wandsbek 1: 25 000 (topographical map). Survey from 1878, edn with supplement 1880, Berlin

  76. Reicherter K, Kaiser A, Stackebrandt W (2005) The post-Glacial landscape evolution of the North German basin: morphology, neotectonics and crustal deformation. Int J Earth Sci (Geol Rundsch) 94:1083–1093

    Article  Google Scholar 

  77. Reicherter K, Froitzheim N, Jarosinki M, Badura J, Franzke HJ, Hansen MB, Hübscher C, Müller R, Poprawa P, Reinecker J, Stackebrandt W, Voigt H, von Eynatten H, Zuchiewicz W (2008) Alpine tectonics north of the Alps. In: McCann T (ed) The geology of Central Europe. Mesozoic and cenozoic, vol 2), pp 1233–1286. London (GSL

    Google Scholar 

  78. Reinhardt HG (1993) Structure of Northeast Germany: regional depth and thickness maps of Permian to 1800 tertiary intervals compiled from seismic reflection data. In: Spencer AM (ed) Generation, accumulation 1801 and production of Europe’s hydrocarbons III, special publication of the European Association of Petroleum Geoscientists, vol 3, pp 155–165. Springer, Berlin

  79. Reinhold K, Krull P, Kockel F (2008) Salzstrukturen Norddeutschlands 1:500 000. Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin/Hannover

    Google Scholar 

  80. Rickert BH (2017) Pollenanalytische Datierung von Sedimentproben aus Profilen im Bereich Hamburg und Schleswig-Holstein. In: Report for Geological Survey, Ministry of Environment and Energy, p 20 (Hamburg, unpubl)

  81. Rinterknecht V, Braucher R, Böse M, Bourlès D, Mercier JL (2012) Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating. Quat Sci Rev 44:89–95

    Article  Google Scholar 

  82. Rist J (1648) Holstein vergiß eß nicht! Johann Naumanns Buchh., Hamburg

    Google Scholar 

  83. Sandersen PBE, Jørgensen F (2015) Neotectonic deformation of a Late Weichselian outwash plain by deglaciation-induced fault reactivation of a deep-seated graben structure. Boreas 44:413–431

    Article  Google Scholar 

  84. Scheck-Wenderoth M, Krzywiec P, Zülke R, Maystrenko Y, Froitzheim N (2008) Permian to Cretaceous tectonics. In: McCann T (ed) The geology of Central Europe. Mesozoic and cenozoic, vol 2, pp 999–1030 (London GSL)

  85. Schlunck J, Wolff W (1912) Geologische Karte von Preußen und benachbarten Bundesstaaten, Blatt Wandsbek. Königl. Preuß. Geol. Landesanstalt, Berlin

    Google Scholar 

  86. Sieberg A (1932) Erdbebengeographie. Bornträger, Berlin

    Google Scholar 

  87. Sims JD (2013) Earthquake-induced load casts, pseudonodules, ball-and-pillow structures, and convolute lamination: additional deformation structures for paleoseismic studies. Geol Soc Am Special Papers 493:191–201

    Article  Google Scholar 

  88. Sirocko F (1998) Die Entwicklung der nordostdeutschen Ströme unter dem Einfluß jüngster tektonischer Bewegungen. Brandenburgische Geowiss Beitr 5(1):75–80

    Google Scholar 

  89. Sirocko F, Szeder T, Seelos K, Lehné R, Schneider W, Dimke M (2002) Young tectonic and halokinetic movements in the North German Basin: it’s effect on formation of rivers and surface morphology. Geol Mijnbouw/Netherlands J Geosci 81(3–4):431–441

    Google Scholar 

  90. Sirocko F, Reicherter K, Lehné R, Hübscher Ch, Winsemann J, Stackebrandt W (2008) Chapter 4.5: Glaciation, salt and the present landscape. Dynamics of complex intracontinental basins. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) The Central European Basin System. Springer, New York, pp 233–246

  91. Slattery S (2011) Neotectonic features and landforms assessment. Report prepared for Nuclear Waste Management Organization, no. NWMO DGR-TR-2011-19, p 58 (unpubl)

  92. Stackebrandt W (2004) Zur Neotektonik in Norddeutschland. Z Geol Wiss 32(2–4):85–95

    Google Scholar 

  93. Stackebrandt W (2005) Neotektonische Aktivitätsgebiete in Brandenburg (Norddeutschland). Brandenburg Geowiss Beitr 12(1/2):165–172 (Kleinmachnow)

    Google Scholar 

  94. Stackebrandt W (2015) Neotektonische Beanspruchung. In: Stackebrandt W, Franke D (eds) Geologie von Brandenburg. Schweizerbart, Stuttgart, pp 480–487

    Google Scholar 

  95. Stephan HJ (2003) Zur Entstehung der eiszeitlichen Landschaft Schleswig-Holsteins. Schr Naturwiss Ver Schlesw-Holst 67:101–118

    Google Scholar 

  96. Stephan HJ (2014) Climato-stratigraphic subdivision of the Pleistocene in Schleswig-Holstein, Germany and adjoining areas—status and problems. E&G Quat Sci J 63(1):3–18

    Google Scholar 

  97. Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice-sheets, crustal deformation and seismicity. Quat Sci Rev 19:1367–1389

    Article  Google Scholar 

  98. Van Ballegooy S, Malan P (2013) Liquefaction vulnerability study. Report prepared for Earthquake Commission, Tonkin & Taylor Ltd (unpubl)

  99. Van Loon AJ, Pisarska-Jamroży M (2014) Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sediment Geol 300:1–10

    Article  Google Scholar 

  100. Van der Meer JJM, Kjaer KH, Kruger J (1999) Subglacial water-escape structures and till structures, Slettjokull. Iceland J Quat Sci 14:191–205

    Article  Google Scholar 

  101. Viete G (1960) Zur Entstehung der glazigenen Lagerungsstörungen unter besonderer Berücksichtigung der Flözdeformation im mitteldeutschen Raum. Freiberger Forschungshefte C78

  102. Vliet-Lanoë B van, Magyari A, Meilliez F (2004) Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global Planet Change 43:103–127

    Article  Google Scholar 

  103. Von Seydewitz (1789) Nähere Nachricht von der gräflich-ranzauischen Kalkbrennerey in der Herrschaft Breitenburg. Schlesw-Holst Provinzialbericht 3Jg. 2(5):129–135

  104. Von Bülow W (2000) Lagerungsverhältnisse seit dem Chatt, abgeleitet aus Aufschlüssen. Schriftenreihe Geowiss 11:387–398

    Google Scholar 

  105. Von Bülow W (2002) Ist die “Brandenburger Wanne” eine Schmelzwasser-Erosionsform oder eine glazioisostatisch-tektonische Senke? Terra Nostra 2002/6:386-393, Berlin/Potsdam

  106. Wansa S (1994) Die Burgkemnitzer Glaziärrinne bei Gräfenhainichen. Hercynia NF 29:131–146

    Google Scholar 

  107. Wheeler RL (2002) Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis. GSA Special Paper 359:1–11

    Google Scholar 

  108. Wolff W (1912) Geologische Karte von Preußen und benachbarten Bundesstaaten, Blatt Bergstedt. Königl. Preuß. Geol. Landesanstalt, Berlin

    Google Scholar 

  109. Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson A (2010) Millennial-scale variability during the last glacial: the ice core record. Quat Sci Rev 29(21–22):2828–2838

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to the “Wohnungsgenossenschaft von 1904 e. G.” for giving me the possibility to investigate the site in detail and publish results. Dipl-Ing. D. Schuldt (Co. K. Petersen, Ahrensburg) supported the work on site. I thank G. Hartmann (BGR, Hannover) for providing information from the BGR earthquake data register (Table 1), Dr. Chr. Weidle (Geophysical Inst., Kiel University) for discussing possible magnitudes, and M. Kalia (BGR, Hannover) for providing radar interferometry data. Beta Analytics LTD (London, UK; Miami, USA) carried out the 14C dating. Dr. Björn-Henning Rickert (Kiel University) conducted a pollen analysis. Detlev Dold (Geological Survey Hamburg) analysed grain size. Peter Sandersen and Erik Skovbjerg Rasmussen (GEUS, Copenhagen) helped with the literature. Klaus Reicherter (RWTH Aachen University) and Gosia Pisarska-Jamroży (University Poznań) are thanked for giving critical reviews. Teresa Gehrs (Georgsmarienhütte) proofread the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alf Grube.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grube, A. Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquake evidence during the younger Weichselian and Holocene. Int J Earth Sci (Geol Rundsch) 108, 845–861 (2019). https://doi.org/10.1007/s00531-019-01681-2

Download citation

Keywords

  • Neotectonics
  • Seismites
  • Liquefaction
  • Blowout clastic dyke
  • Soft-sediment deformation structures