Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 3, pp 845–861 | Cite as

Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquake evidence during the younger Weichselian and Holocene

  • Alf GrubeEmail author
Original Paper

Abstract

Investigations at a construction site in Hamburg (NW Germany) exposed palaeoseismic structures from moderate to strong earthquakes. Based on the large size of large blowout clastic dykes being up to 2.0 m wide and 2.5 m high, as well as the occurrence of infill structures, erratics/rafts of up to 9 kg in weight, seismites s.s. and decimetre-scale folds or seismoslumps, the magnitude of the earthquakes could be in the order of up to M ≥ 6. This is significantly higher than previously assumed for prehistorical seismic events in NW Germany. The structures are assigned to earthquakes possibly related to NW–SE-oriented faults that are evident in Lidar and SAR surface interpretations. Organic material from blowout-related infill bowls, assumed to be synchronously formed collapse depressions, are analysed for 14C ages. The dates reveal ages between 31,500 and 1200 14C cal a BP, indicating five prehistoric earthquakes. Accordingly, three of these earthquakes occurred before and after the main Weichselian glaciation phase (ca. 31,350, 26,850 and 18,980 14C cal a BP), and two occurred during the Subatlantic (ca. 4900 and 1200 14C cal a BP). The Weichselian events indicate seismic activity in the ice marginal zone during or following interstadials/Dansgaard–Oeschger events, as well as suggesting that advancing ice sheets foster earthquakes.

Keywords

Neotectonics Seismites Liquefaction Blowout clastic dyke Soft-sediment deformation structures 

Notes

Acknowledgements

I am grateful to the “Wohnungsgenossenschaft von 1904 e. G.” for giving me the possibility to investigate the site in detail and publish results. Dipl-Ing. D. Schuldt (Co. K. Petersen, Ahrensburg) supported the work on site. I thank G. Hartmann (BGR, Hannover) for providing information from the BGR earthquake data register (Table 1), Dr. Chr. Weidle (Geophysical Inst., Kiel University) for discussing possible magnitudes, and M. Kalia (BGR, Hannover) for providing radar interferometry data. Beta Analytics LTD (London, UK; Miami, USA) carried out the 14C dating. Dr. Björn-Henning Rickert (Kiel University) conducted a pollen analysis. Detlev Dold (Geological Survey Hamburg) analysed grain size. Peter Sandersen and Erik Skovbjerg Rasmussen (GEUS, Copenhagen) helped with the literature. Klaus Reicherter (RWTH Aachen University) and Gosia Pisarska-Jamroży (University Poznań) are thanked for giving critical reviews. Teresa Gehrs (Georgsmarienhütte) proofread the paper.

References

  1. Adam N, Gonzalez FR, Parizzi A, Liebhart W (2011) Wide area persistent scatterer interferometry: algorithms and examples. In: Proceedings of Fringe 2011 (ESA SP), pp 1–5Google Scholar
  2. Al Hseinat M, Hübscher C (2017) Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophysics 708:28–55CrossRefGoogle Scholar
  3. Arnaud E (2011) The paleoclimatic significance of deformation structures in Neoproterozoic successions. Invited review paper for special issue on clastic sedimentology and the neoproterozoic glaciations. Sediment Geol 243–244:33–56Google Scholar
  4. Audemard FA, Santis F (1991) Survey of liquefaction structures induced by recent moderate earthquakes. Bull Int Assoc Eng Geol 44:5–16CrossRefGoogle Scholar
  5. Bahr A (1932) Frostgestauchte Böden im westlichen Schleswig-Holstein. Z dt Geol Ges 84:24–35Google Scholar
  6. Baldschuhn R, Frisch U, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jb A 153, Hannover (BGR)Google Scholar
  7. Benediktsson ÍÖ, Schomacker A, Lokrantz H, Ingólfsson Ó (2009) The 1890 surge end moraine at Eyjabakkajö kull, Iceland: a re-assessment of a classic glaciotectonic locality. Quat Sci Rev 29(3):484–506Google Scholar
  8. BGR—Bundesanstalt für Geowissenschaften und Rohstoffe (2016) Erdbebendatenbasis Deutschland. BGR, Stand: 25.10.2016 (unpubl)Google Scholar
  9. Brandes C, Winsemann J (2013) Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. Int J Earth Sci 102:2255–2274CrossRefGoogle Scholar
  10. Brandes C, Polom U, Winsemann J (2011) Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Res 23:53–64CrossRefGoogle Scholar
  11. Brandes C, Winsemann J, Roskosch J, Meinsen J, Tanner DC, Frechen M, Steffen H, Wu P (2012) Activity along the Osning thrust in Central Europe during the lateglacial: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62CrossRefGoogle Scholar
  12. Brandes C, Steffen H, Bönnemann C, Plenefisch T, Gestermann N, Winsemann J (2014) Aktive Tektonik in Norddeutschland: glazial-isostatische Ausgleichsbewegungen und/oder Folgen der Erdöl/Erdgas-Förderung? Erdöl Erdgas Erdöl 130:138–143Google Scholar
  13. Brodzikowski K, Haluszczak A (1987) Flame structures and associated deformations in Quaternary glaciolacustrine and glaciodeltaic deposits: examples from central Poland. Geol Soc Lond Special Publ 29(1):279–286CrossRefGoogle Scholar
  14. Burbidge GH, French HM, Rust BR (1988) Water escape fissures resembling ice wedge casts in Late Quaternary subaqueous outwash near St. Hare, Quebec, Canada. Boreas 17:33–40CrossRefGoogle Scholar
  15. Buurman N (2010) Charakterisierung von Zirkularstrukturen im geologischen Untergrund Hamburgs zur Abgrenzung verkarstungsgefährdeter Bereiche. Dissertation, University of Hamburg, Department Geowissenschaften, p 224Google Scholar
  16. Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seismol 11(4):473–487CrossRefGoogle Scholar
  17. Cox RT, Lowe C, Hao Y, Mahan SA (2014) Use of small-scale liquefaction features to assess paleoseismicity: an example from the Saline River fault zone, Southeast Arkansas, USA. Front Earth Sci 17Google Scholar
  18. Dahm T, Heimann S, Bialowons W (2011) A seismological study of shallow weak earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution. Nat Hazards 58(3):1111–1134CrossRefGoogle Scholar
  19. Davenport CA (1994) Geotechnical consequence of ground motion—hazard perspectives. Geol Mijnbouw 73:339–356Google Scholar
  20. Demoulin A (1996) Clastic dykes in East Belgium—evidence for Upper Pleistocene strong earthquakes west of the Lower Rhine rift segment. J Geol Soc 153(5):803–810CrossRefGoogle Scholar
  21. Druzhinina O, Bitinas A, Molodkov A, Kolesnik T (2017) Palaeoseismic deformations in the Eastern Baltic region (Kaliningrad District of Russia). Estonian J Earth Sci 66(3):119–129CrossRefGoogle Scholar
  22. Dulce J-Chr (1982) Zur Anwendungsmöglichkeit linearanalytischer Fernerkundungsmethoden im Verbreitungsgebiet quartärer Ablagerungen am Beispiel Schleswig-Holsteins. Dissertation, University of Kiel, p 136Google Scholar
  23. Ehlers J Bunge D, Grube A, Kersting G, Kröger J, Moosmann L, Schröder M, Thieme W (2011a) Geologische Karte von Hamburg 1:25.000, Blatt 2326 Fuhlsbüttel. Ehlers J with input from. Geologisches Landesamt Hamburg, HamburgGoogle Scholar
  24. Ehlers J, Grube A, Stephan HJ, Wansa S (2011b) Pleistocene glaciations of North Germany—new results. Dev Quat Sci 15:149–162Google Scholar
  25. Eissmann L (2002) Quaternary geology of eastern Germany (Saxony, Saxon-Anhalt, South Brandenburg, Thuringia), type area of the Elsterian and Saalian Stages in Europe. Quat Sci Rev 21:1275–1346CrossRefGoogle Scholar
  26. Franke D, Hoffmann N (1997) Die regionale Stellung der externen variszischen Außenzone Nordostdeutschlands im Gesamtrahmen Mittel- und Westeuropas. Z Geol Wiss 25(3/4):375–412Google Scholar
  27. French HM (2007) The Periglacial Environment. Wiley, ChichesterCrossRefGoogle Scholar
  28. Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187CrossRefGoogle Scholar
  29. Gregersen S, Voss PH (2014) Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years—earthquakes in Denmark? Solid Earth 5:109–118CrossRefGoogle Scholar
  30. Grim S (2012) Abflusslose Senken—Instrumente in der Landschaftsanalyse und Indikatoren rezenter Krustenbewegungen. Dissertation, University of MainzGoogle Scholar
  31. Grim S, Sirocko F (2012) Natural depressions on modern topography in Schleswig-Holstein (Northern Germany)—indicators for recent crustal movements or “only” kettle holes? Z dt Ges Geowiss 163(4):13Google Scholar
  32. Gripp K (1920) Steigt das Salz zu Lüneburg, Langenfelde und Segeberg episodisch oder kontinuierlich? Jb Niedersächs Geol 13:1–41Google Scholar
  33. Grube F (1974) Ingenieurgeologische Erkundung der Erdfälle im Bereich des Salzstockes Othmarschen-Langenfelde (Hamburg). In: International symposium Ingenieurgeol, T4-B7, HannoverGoogle Scholar
  34. Grube A (2018) Palaeoseismic structures in Quaternary sediments, related to an assumed Hercynian fault north of the Permian salt structure Peissen-Gnutz (NW Germany)—neotectonic activity from the Saalian to the Weichselian/Holocene. Geomorphology 328:15–27CrossRefGoogle Scholar
  35. Grünthal G, Stromeyer D, Wylegalla K, Kind R, Wahlström R, Yuan X, Bock G (2008) The Mw 3.1–4.7 earthquakes in the southern Baltic Sea and adjacent areas in 2000, 2001 and 2004. J Seismol 12:413–429CrossRefGoogle Scholar
  36. Hardt J (2017) Weichselian phases and ice dynamics of the Scandinavian ice sheet in northeast Germany. Dissertation, University of Berlin (Freie Universität), Department of Earth SciencesGoogle Scholar
  37. Hese F (2012) 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Dissertation, University of Kiel, p 154Google Scholar
  38. Hoffmann G, Reicherter K (2012) Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). Int J Earth Sci (Geol Rundsch) 101:351–363CrossRefGoogle Scholar
  39. Houmark-Nielsen M (2010) Extent, age and dynamics of marine isotope stage 3 glaciations in the southwestern Baltic Basin. Boreas 39:343–359CrossRefGoogle Scholar
  40. Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2015) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45CrossRefGoogle Scholar
  41. Ihde 1, Steinberg J, Ellenberg J, Bankwitz E (1987) On recent vertical crustal movements derived from revellings within the territory of the G.D.R. Gerlands Beitr. Geophysik 206–217Google Scholar
  42. Illies H (1955) Pleistozäne Salzstockbewegung in Norddeutschland und ihre regionale Anordnung. Geol Rdsch 43:70–78CrossRefGoogle Scholar
  43. Jäger K (2003) Fernerkundliche und linearanalytische Untersuchungen an tektonischen und geologischen Strukturen in Ostholstein. Diploma thesis, University of Mainz, p 58Google Scholar
  44. Jakobsen PR, Schack Pedersen SA (2008) Fracture valleys in central Jylland—a neotectonic feature. Geol Surv Denmark Greenland Bull 17:33–36Google Scholar
  45. Janszen A (2012) Tunnel valleys: genetic models, sedimentary infill and 3D architecture. Proefscchrift Technical University Delft, Delft, p 203Google Scholar
  46. Jaritz W (1980) Bemerkungen zur Geologie des präquartären Untergrundes in der Umgebung von Gorleben. Z dt Geol Ges 131:521–558Google Scholar
  47. Johnston AC (1989) The effect of large ice sheets on earthquake genesis. In: Gregersen S, Basham PW (eds) Earthquakes at North-Atlantic passive margins: neotectonics and postglacial rebound. Kluwer, Dordrecht, pp 345–353Google Scholar
  48. Koch E (1949) Die Geologischen Grundlagen der Grundwassergewinnung Hamburgs. 100 Jahre Hamburger Wasserwerke. Sonderheft DVGW HannoverGoogle Scholar
  49. Kockel F (1995) Structural and palaeogeographical development of the German north sea sector. Beiträge Reg Geol Erde 26:96Google Scholar
  50. Kronborg C, Bender H, Larsen G (1977) Tektonik som en mulig medvirkende årsag til daldannelsen i Midtjylland. In: Danmarks geologiske Undersøgelse år-bog, pp 63–76Google Scholar
  51. Kurzawa M (2003) The sedimentary record and rates of quaternary vertical tectonic movements in NW Poland. Quat Int 101–102:137–148CrossRefGoogle Scholar
  52. Lagerbäck R (1991) Seismically deformed sediments in the Lansjärv area, Northern Sweden. In: SKB technical report 91-17, Svensk Kärnbränslehantering AB, Stockholm, p 58Google Scholar
  53. Lagerbäck R, Sundh M (2008) Early Holocene faulting and paleoseismicity in northern Sweden. Research paper C836 SGU, UppsalaGoogle Scholar
  54. Larsen E, Mangerud J (1992) Subglacially formed clastic dykes. Sver Geol Unders 81:163–170Google Scholar
  55. Lehné RJ (2005) Rezente Bodenbewegungspotenziale in Schleswig-Holstein (Deutschland)—Lokalisierung und Quantifizierung durch GIS-Analysen, seismische Interpretation, Fernerkundung, statistische Auswertung und Feldarbeit. Dissertation, University of Mainz, Fachbereich Chemie, Pharmazie und Geowissenschaften, p 190, MainzGoogle Scholar
  56. Lehné RW, Sirocko F (2007) Recent movement potentials in Schleswig-Holstein (Germany) - cause and influence on the development of modern topography. Z dt Ges Geowiss 158(2):329–347Google Scholar
  57. Lehné RW, Sirocko F (2010) Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig-Holstein) derived by GIS-based analysis of repeated precise levelling data. Z dt Ges Geowiss 161(2):175–188Google Scholar
  58. Leydecker G (2011) Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008. Geol Jb E59:1–198Google Scholar
  59. Leydecker G, Aichele H (1998) The seismogeographical regionalisation for Germany: the prime example of third-level regionalisation. Geol Jb E 55:85–98Google Scholar
  60. Litt T, Behre KE, Meyer KD, Stephan HJ, Wansa S (2007) Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. E & G Quat Sci J 56(1–2):7–65CrossRefGoogle Scholar
  61. Lowe DR (1975) Water escape structures in coarse grained sediments. Sedimentology 22:157–204CrossRefGoogle Scholar
  62. Ludwig AO (1995) The surface of the Holsteinian interglacial sediments as a base level for reconstruction of vertical neotectonic movements in northern Germany. Tech Poszukiwan Geol 34(3):31–36Google Scholar
  63. Ludwig AO, Schwab G (1995) Neogeodynamica Baltica—ein internationales Kartenprojekt (IGCP-Projekt Nr. 346). Brandenburg. Geowiss Beitr 2(2):47–57Google Scholar
  64. Lüthgens C, Böse M, Krbetschek M (2009) Towards a new understanding of the last glacial maximum (LGM) in NE-Germany—results from optically stimulated luminescence (OSL) dating and their implications. Exploratory workshop on the frequency and timing of glaciations in northern Europe (including Britain) during the Middle and Late Pleistocene. Abstracts, pp 17–18, Berlin (FU)Google Scholar
  65. Lykke-Andersen H (1981) Indications of neotectonic features in Denmark. Z Geomorph NF 40:43–54Google Scholar
  66. Marcussen I (1977) Deglaciation landscapes formed during the wasting of the late Middle Weichselian ice sheet in Denmark. Danmarks Geol Unders Raekke 110:72 ppGoogle Scholar
  67. Meyer KD (1980) Quartäre Tektonik im Unterelbe-Gebiet? Z dt Geol Ges 131:530–546Google Scholar
  68. Montenat C, Barrier P, d’Estevou PO, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sediment Geol 196:5–30CrossRefGoogle Scholar
  69. Muir-Wood R (2000) Deglaciation seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quat Sci Rev 19:1399–1411CrossRefGoogle Scholar
  70. Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Eng Geol 44:1–76CrossRefGoogle Scholar
  71. Obermeier SF, Olson SM, Green RA (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76:209–234CrossRefGoogle Scholar
  72. Pirrotta C, Barbano MS, Guarnieri P, Gerardi F (2007) A new dataset and empirical relationships between magnitude/intensity and epicentral distance for liquefactions in central-eastern Sicily. Ann Geophys 50(6):763–774Google Scholar
  73. Pisarska-Jamroży M, Woźniak PP (2018) Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast. Poland Geomorphol.  https://doi.org/10.1016/j.geomorph.2018.01.015 Google Scholar
  74. Pisarska-Jamroży M, Belzyt S, Börner A, Hoffmann G, Hüneke H, Kenzler M, Obst K, Rother H, Van Loon AJ (Tom) (2018) Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics.  https://doi.org/10.1016/j.tecto.2018.08.004
  75. Preußische Landesaufnahme (1881) Blatt Wandsbek 1: 25 000 (topographical map). Survey from 1878, edn with supplement 1880, BerlinGoogle Scholar
  76. Reicherter K, Kaiser A, Stackebrandt W (2005) The post-Glacial landscape evolution of the North German basin: morphology, neotectonics and crustal deformation. Int J Earth Sci (Geol Rundsch) 94:1083–1093CrossRefGoogle Scholar
  77. Reicherter K, Froitzheim N, Jarosinki M, Badura J, Franzke HJ, Hansen MB, Hübscher C, Müller R, Poprawa P, Reinecker J, Stackebrandt W, Voigt H, von Eynatten H, Zuchiewicz W (2008) Alpine tectonics north of the Alps. In: McCann T (ed) The geology of Central Europe. Mesozoic and cenozoic, vol 2), pp 1233–1286. London (GSLGoogle Scholar
  78. Reinhardt HG (1993) Structure of Northeast Germany: regional depth and thickness maps of Permian to 1800 tertiary intervals compiled from seismic reflection data. In: Spencer AM (ed) Generation, accumulation 1801 and production of Europe’s hydrocarbons III, special publication of the European Association of Petroleum Geoscientists, vol 3, pp 155–165. Springer, BerlinGoogle Scholar
  79. Reinhold K, Krull P, Kockel F (2008) Salzstrukturen Norddeutschlands 1:500 000. Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin/HannoverGoogle Scholar
  80. Rickert BH (2017) Pollenanalytische Datierung von Sedimentproben aus Profilen im Bereich Hamburg und Schleswig-Holstein. In: Report for Geological Survey, Ministry of Environment and Energy, p 20 (Hamburg, unpubl)Google Scholar
  81. Rinterknecht V, Braucher R, Böse M, Bourlès D, Mercier JL (2012) Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating. Quat Sci Rev 44:89–95CrossRefGoogle Scholar
  82. Rist J (1648) Holstein vergiß eß nicht! Johann Naumanns Buchh., HamburgGoogle Scholar
  83. Sandersen PBE, Jørgensen F (2015) Neotectonic deformation of a Late Weichselian outwash plain by deglaciation-induced fault reactivation of a deep-seated graben structure. Boreas 44:413–431CrossRefGoogle Scholar
  84. Scheck-Wenderoth M, Krzywiec P, Zülke R, Maystrenko Y, Froitzheim N (2008) Permian to Cretaceous tectonics. In: McCann T (ed) The geology of Central Europe. Mesozoic and cenozoic, vol 2, pp 999–1030 (London GSL)Google Scholar
  85. Schlunck J, Wolff W (1912) Geologische Karte von Preußen und benachbarten Bundesstaaten, Blatt Wandsbek. Königl. Preuß. Geol. Landesanstalt, BerlinGoogle Scholar
  86. Sieberg A (1932) Erdbebengeographie. Bornträger, BerlinGoogle Scholar
  87. Sims JD (2013) Earthquake-induced load casts, pseudonodules, ball-and-pillow structures, and convolute lamination: additional deformation structures for paleoseismic studies. Geol Soc Am Special Papers 493:191–201CrossRefGoogle Scholar
  88. Sirocko F (1998) Die Entwicklung der nordostdeutschen Ströme unter dem Einfluß jüngster tektonischer Bewegungen. Brandenburgische Geowiss Beitr 5(1):75–80Google Scholar
  89. Sirocko F, Szeder T, Seelos K, Lehné R, Schneider W, Dimke M (2002) Young tectonic and halokinetic movements in the North German Basin: it’s effect on formation of rivers and surface morphology. Geol Mijnbouw/Netherlands J Geosci 81(3–4):431–441Google Scholar
  90. Sirocko F, Reicherter K, Lehné R, Hübscher Ch, Winsemann J, Stackebrandt W (2008) Chapter 4.5: Glaciation, salt and the present landscape. Dynamics of complex intracontinental basins. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) The Central European Basin System. Springer, New York, pp 233–246Google Scholar
  91. Slattery S (2011) Neotectonic features and landforms assessment. Report prepared for Nuclear Waste Management Organization, no. NWMO DGR-TR-2011-19, p 58 (unpubl)Google Scholar
  92. Stackebrandt W (2004) Zur Neotektonik in Norddeutschland. Z Geol Wiss 32(2–4):85–95Google Scholar
  93. Stackebrandt W (2005) Neotektonische Aktivitätsgebiete in Brandenburg (Norddeutschland). Brandenburg Geowiss Beitr 12(1/2):165–172 (Kleinmachnow)Google Scholar
  94. Stackebrandt W (2015) Neotektonische Beanspruchung. In: Stackebrandt W, Franke D (eds) Geologie von Brandenburg. Schweizerbart, Stuttgart, pp 480–487Google Scholar
  95. Stephan HJ (2003) Zur Entstehung der eiszeitlichen Landschaft Schleswig-Holsteins. Schr Naturwiss Ver Schlesw-Holst 67:101–118Google Scholar
  96. Stephan HJ (2014) Climato-stratigraphic subdivision of the Pleistocene in Schleswig-Holstein, Germany and adjoining areas—status and problems. E&G Quat Sci J 63(1):3–18Google Scholar
  97. Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice-sheets, crustal deformation and seismicity. Quat Sci Rev 19:1367–1389CrossRefGoogle Scholar
  98. Van Ballegooy S, Malan P (2013) Liquefaction vulnerability study. Report prepared for Earthquake Commission, Tonkin & Taylor Ltd (unpubl) Google Scholar
  99. Van Loon AJ, Pisarska-Jamroży M (2014) Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sediment Geol 300:1–10CrossRefGoogle Scholar
  100. Van der Meer JJM, Kjaer KH, Kruger J (1999) Subglacial water-escape structures and till structures, Slettjokull. Iceland J Quat Sci 14:191–205CrossRefGoogle Scholar
  101. Viete G (1960) Zur Entstehung der glazigenen Lagerungsstörungen unter besonderer Berücksichtigung der Flözdeformation im mitteldeutschen Raum. Freiberger Forschungshefte C78Google Scholar
  102. Vliet-Lanoë B van, Magyari A, Meilliez F (2004) Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global Planet Change 43:103–127CrossRefGoogle Scholar
  103. Von Seydewitz (1789) Nähere Nachricht von der gräflich-ranzauischen Kalkbrennerey in der Herrschaft Breitenburg. Schlesw-Holst Provinzialbericht 3Jg. 2(5):129–135Google Scholar
  104. Von Bülow W (2000) Lagerungsverhältnisse seit dem Chatt, abgeleitet aus Aufschlüssen. Schriftenreihe Geowiss 11:387–398Google Scholar
  105. Von Bülow W (2002) Ist die “Brandenburger Wanne” eine Schmelzwasser-Erosionsform oder eine glazioisostatisch-tektonische Senke? Terra Nostra 2002/6:386-393, Berlin/PotsdamGoogle Scholar
  106. Wansa S (1994) Die Burgkemnitzer Glaziärrinne bei Gräfenhainichen. Hercynia NF 29:131–146Google Scholar
  107. Wheeler RL (2002) Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis. GSA Special Paper 359:1–11Google Scholar
  108. Wolff W (1912) Geologische Karte von Preußen und benachbarten Bundesstaaten, Blatt Bergstedt. Königl. Preuß. Geol. Landesanstalt, BerlinGoogle Scholar
  109. Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson A (2010) Millennial-scale variability during the last glacial: the ice core record. Quat Sci Rev 29(21–22):2828–2838CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Geological SurveyMinistry for Environment and EnergyHamburgGermany

Personalised recommendations