Skip to main content
Log in

A seismological study of shallow weak micro-earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In the night from 8/9 April 2009, shortly after midnight on Maundy Thursday before Easter, several people in Gross Flottbek, Hamburg, felt unusual strong ground shocks so that some of them left their houses in fear of earthquake shaking. Police and fire brigade received phone calls of worried residents. A few days later, Internet pages were published where people reported their observations. On 21 April 2009 at about 8 p.m. local time, a second ground-shaking event was felt. Damage to buildings or infrastructure did not occur to our knowledge. The Institute of Geophysics, University of Hamburg, installed from 22 April to 17 May 2009 three temporal seismic stations in the epicentral area. Seismological data from two nearby stations at the Deutsches Elektronen-Synchrotron at 1 km and the Geophysical Institute at 7 km distance were collected and integrated to the temporal network. The events occurred above the roof of the shallow Othmarschen Langenfelde salt diapir, in an area known for active sinkhole formation and previous historic ground-shaking events. The analysis of the seismological data shows that three shallow micro-earthquakes occurred from 8 to 21 April at a depth of about 100 m, the largest one with a moment magnitude of about M W 0.6. Depth location of such shallow events is difficult with standard methods and is here constrained by waveform modeling of surface waves. Earthquakes occurring in soft sediments within the uppermost 100 m are a rare phenomena and cannot be explained by standard models. Rupture process in soft sediments differs from those on faults in more competent rock. We discuss the rupture and source mechanism of the events in the context of previous historic shocks and existing sinkhole and deformation data. Although the event was weak, the rupture duration of 0.3 s was unusual long. Three possible models for the generation of repeated ground-shaking events in Gross Flottbek are developed and discussed, implying quit different hazards for subsidence, ground motion, and sinkhole formation. Our favored model postulates that roof failure occurs in an existing soil cavity beneath the epicenter at a depth of about 100 m. Other models bearing a smaller geo-hazard cannot be disproved with the data available, but future geophysical experiments may be planned to resolve this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aktison G, Kaka S (2007) Relationship between felt intensity and intrumental ground motion in the Central United States and California. Bull Seism Soc Am 97:497–510

    Article  Google Scholar 

  • Baldschuh R, Fritsch U, Kockel F (2001) The basement block pattern in Northwest Germany. In: Baldschuh R, Binot F, Fleig S, Kockel F (eds) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor, cartographic map, 1:500000, Schweitzerbart

  • Benito G, del Campo P, Gutierrez-Elorza M, Sancho C (1995) Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain. Env Geol 25:156–164

    Article  Google Scholar 

  • Bertoni C, Cartwright J (2005) 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. Journal Geological Society, London 162:909–926

    Article  Google Scholar 

  • Buurman N (2010) Zirkular-Strukturen in der Metropolregion Hamburg und ihre potenziellen Geogefahren. PhD thesis, Geologisch-Pal. Institut, University of Hamburg

  • Cesca S, Heimann S, Stammler K, Dahm T (2010) Automated procedure for point and kinematic source inversion at regional distances. J Geophys Res 115:B06304. doi:10.1029/2009JB006450

    Article  Google Scholar 

  • Dahm T, Krüger F, Stammler K, Klinge K, Kind R, Wylegalla K, Grasso J (2007) The m w = 4.4 Rotenburg, Northern Germany, earthquake and its possible relationship with gas recovery. Bull Seism Soc Am 97(10.1785/0120050149):691–704

    Article  Google Scholar 

  • Dahm T, Kühn D, Ohrnberger M, Kröger J, Wiederhold H, Reuther C, Dehghani A, Scherbaum F (2010) Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments: application to Hamburg, Germany. Geophys J Int 181(10.1111/j.365-246X.2010.04521.x):154–172

    Article  Google Scholar 

  • Eliasen A, Talbot M (2005) Solution-collapse breccias of the Minkinfjellet and Wordiekammen formations, Central Spitsbergen, Svalbard: a large gypsum palaeokarst system. Sedimentology 52:775–794

    Article  Google Scholar 

  • Epstein J (2001) Hydrology, hazard and geomorphical development of gypsum karst in the Northern Black Hills, South Dakota and Wyoming. In: US geological survey karst interest group proceedings, water-resources investigations report 01-4011, pp 30–37

  • Grube F (1970) Baugeologie der Lockergesteine im weiten Hamburger Raum. In: Mitt. Nr. 69, Geologisches Landesamt Hamburg. Grundbau Taschenbuch Wilhelm Ernst & Sohn, Berlin, pp 109–160

  • Grube F (1973) Ingenieurgeologische Erkundung der Erdfälle im Bereich des Salzstocks Othmarschen-Langenfelde (Hamburg). Report, Geol. Landesamt Hamburg

  • Grube F (1974) Experiences of engineering geology on the top of the saltdome Othmarschen-Langenfelde (Hamburg). In: Engineering geology, vol T47, B1-B7. Engineering geology Hannover-Essen, Geology symposium international association

  • Hamm F (1956) Naturkundliche Chronik Nordwestdeutschlands. Landbuch Verlag, Hannover

    Google Scholar 

  • Heimann S (2011) A robust method to estimate kinematic earthquake source parameter. PhD thesis, University of Hamburg, MIN Faculty, Institute of Geophysics, 151 pp

  • Johnson K (2008) Gypsum-karst problems in constructing dams in the USA. Environ Geol 53:945–950. doi:10.1007/s00245-007-0720-z

    Article  Google Scholar 

  • Klinge H, Köthe A, Ludwig R-R, Zwirner R (2002) Geologie und Hydrogeologie des Deckgebirges über dem Salzstock Gorleben. Z Angew Geol 2:7–15

    Google Scholar 

  • Koch E (1918) Der Bahrenfelder See. In: Beiheft zum Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten XXXV 1917. Mitteilungen aus dem Mineralogisch-Geologischen Institut in Hamburg, Otto Miessners Verlag, Hamburg, pp 1–44

  • Koch E (1938) Aufbau des tieferen Untergrundes im weiteren Umkreis der geplanten Elbhochbrücke mit einer Karte 1:25000. In: unveröff. Gutachten vom 10.07.1938, Archiv GLA. Geologisches Landesamt Hamburg

  • Krüger F, Klinge K (2002) The 1996 Teutschenthal Potash Mine Collapse: an unusual event with an unusual mechanism. In: Korn M (ed) Ten years of German regional seismic network (GRSN). Senate commission for geoscience, pp 206–210

  • Kühn D, Dahm T, Ohrnberger M, Vollmer D (2011) Imaging a shallow salt diapir using ambient seismic vibrations beneath the densely built-up city area of Hamburg, Northern Germany. J Seismol (revised)

  • Land L (2009) Anthopogenic sinkholes in the Delaware basin region: West Texas and Southeastern New Mexico. WTGS Bull 48(6):10–22

    Google Scholar 

  • Leydecker G (1986) Erdbebenkatalog für die Bundesrepublik Deutschland mit Ranbieten für die Jahre 1000-1981. Geol. Jb, E36

  • Leydecker G (1998) Earthquake catalogue for the Federal Republic of Germany and Adjacent Areas for the Years 800-2004. Federal Institute for Geoscience and Natural Resources, Stilleweg 2, 30566 Hannover, Germany, pp 35–37

  • Loucks R, Mescher P, McMechan G (2004) Three-dimensional architecture of a collapsed-paleocave system in the Lower Ordovician Ellenburger Group, central Texas. AAPG Bull 88:545–564

    Google Scholar 

  • Malovichko D, Dyagilev R, Shulakov DY, Butyrin P (2009) Seismic monitoring of large-scale karst processes in a potash mine. In: Tang C (eds) Controlling seismic hazard and sustainable development of deep mines, vol 2. Rinton Press, New York, pp 989–1002

    Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2003) The rock physics handbook: tools for analysis in porous media. Cambridge University Press, Cambridge, UK, 325 pp

  • McDonnell A, Loucks R, Dooley T (2007) Quantifying the origin and geometry of circular sag structures in northen Fort Worth Basin, Texas: paleocave collapse, pull-apart fault systems, or hydrothermal alteration?. AAPG Bull 91:1295–1318

    Article  Google Scholar 

  • Neunhöfer H (1967) Statistische Gesetzmässigkeiten der zeitlichen Verteilung sowie des Energie-Häufigkeits-Zusammenhanges von Gebirgsschlägen und die Möglichkeiten einer statistischen Gebirgsschlagsprognose. Akademi Verlag Berlin, Veröffentlichungen des Instituts für Geodynamik Jena 11:1–79

  • Neunhöfer H (1997) Überwachung nichttektonischer Erderschütterungen in Mittel-/Ostdeutschland mit lokalen seismischen Stationen. In: Neunhöfer H, Börngen M, Junge A, Schweitzer J (eds) Zur Geschichte der Geophysik in Deutschland. Jubiläumsschrift, Deutsche Geophysikalische Gesellschaft 1922–1997, pp 201–206

  • Niedermayer J (1962) Die geologischen Verhältnisse im Bereich des Salzstocks von Hamburg-Langenfelde. Mitteilung Geol Landesamt Hamburg 39:167–175

    Google Scholar 

  • Ottenmöller L, Nielsen H, Atakan K, Braunmiller J, Havskov J (2005) The 7 May 2001 induced seismic event in the Ekofisk oil field, North Sea. J Geophys Res B10301. doi:10.1029/2004JB003374

  • Paluska A (2002) Geologische Stellungnahme zum Bebauungs-Planentwurf Gross Flottbek 10 (Osdorfer Marktplatz). Report A.z. 2002–33, Geol. Landesamt Hamburg, pp 1–76

  • Parise M, Trocino A (2005) Gypsum carst in the Crotone Province (Calabrioa, Southern Italy). Acta Carsol 34(2):370–382

    Google Scholar 

  • Reinhold K, Krull P, Kockel F (2008) Salzstrukturen Norddeutschlands: geologische Karte 1:50000. Bundesanstalt für Geowissenschaften und Rohstoffe Hannover

  • Reuther C, Buurman N, Kühn D, Ohrnberger M, Dahm T, Scherbaum F (2007) Erkundung des unterirdischen Raums der Metropolregion Hamburg—Das Projekt HADU (Hamburg—A dynamic underground). Geotechnik 30:11–20

    Google Scholar 

  • Schäfers P, Trapp T (2007) Gutachten Bericht Nr. 3—Kurzfassung: Senkungsstruktur Ochtmisser Kirchsteig in Lüneburg. Report, CDM consult GmBH, D-44793 Bochum, Stadt Lüneburg, project no 57053

  • Schmidt C (1963) Erdbeben in Hamburg-Gross-Flottbek im Januar 1963. Report, Baubehörde Hamburg

  • Sieberg A (1932) Erdbebengeographie. In: Gutenberg B (eds) Handbuch der Geophysik IV. Bornträger, Berlin, pp 688–1005

    Google Scholar 

  • Sieberg A (1940) Beiträge zum Erdbebenkatalog Deutschlands und angrenzender Gebiete für die Jahre 58 bis 1799. Reichsverlagsamt Berlin, pp 1–195

  • Soriano M, Simon J (1995) Alluvial dolines in the Central Ebro basin, Spain: a spatial and developmental hazard analysis. Geomorphology 11:295–309

    Article  Google Scholar 

  • Soriano M, Simon J (2002) Subsidence rates and urban damages in alluvial dolines of Central Ebro basin (NE Spain). Environ Geol 42:467–484

    Google Scholar 

  • Tharp T (1999) Mechanism of upward propagation of cover-collpase sinkholes. Eng Geol 53:23–33

    Article  Google Scholar 

  • Tharp T (2003) Cover-collapse sinkhole formation and soil plasticity. American social civil engineers geotechnical special publication 122, pp 110–123

  • Toulemont M (1985) Les risques d’instabilite lies au karst gypseux lutetien de la region parisienne. Bulletin liason Laboratoires Ponts et Chaussees 150(151):109–116

    Google Scholar 

  • Walter M, Joswig M (2008) Seismic monitoring of fracture processes from a creeping landslide in the Vorarlberg Alps. First Break 26:131–135

    Google Scholar 

  • Walter M, Joswig M (2009) Seismic characterisation od slope dynamics by softrock-landslides: the super-Sauze case study. In: Malet J-P, Remaitre A, Boogard T (ed) Proceedings of the international conference on landslide processes: from geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 215–220

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer, New York

    Google Scholar 

  • Wang R (1999) A simple orthonormalizing method for stable and efficient computations of Green functions. Bull Seism Soc Am 89:733–741

    Google Scholar 

  • Warren (2006) Evaporites—-sediments, resources and hydrocarbons. Springer, Dordrecht, 1035 pp

  • Wust-Bloch G, Joswig M (2006) Pre-collapse identification of sinkholes in unconsolidated media at dead sea area by “nanoseismic monitoring” (graphical jackknife location of weak sources by few, low-snr records). Geophys J Int 167:1220–1232. doi:10.1111/j.1365-264X.2006.03083.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Families Bahr, Vossberg, and Wiemers for their help. Daniela Kühn and Matthias Ohrnberger helped with the velocity model. Frank Krüger read and improved the manuscript. The study has benefited from results and work obtained during the HADU project (03G0621A), which was funded by BMBF within the GEOTECHNOLOGIES program. Three reviewers provided very helpful comments to improve the clarity of the manuscript and our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Dahm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (39 KB)

Appendices

Appendix 1: Summary of historical ground shocks in Hamburg

See Table 1.

Table 1 Summary of historical reports on unusual ground shaking in Hamburg, classified as confirmed (A) or vague (C) if original literature has not been available to the authors. References: S32 = Sieberg (1932); S40 = Sieberg (1940); LD = Leydecker (1986, 1998); HA = Hamm (1956)

Appendix 2: Drift correction station DES4

See Fig. 14.

Fig. 14
figure 14

Time shift and drift of station DES4, as derived from cross-correlating body-wave phases of 10 different teleseismic earthquakes. Pn, P, and PP phases (red crosses), as well as Sn, S, and SS phases (blue circles) have been used (where observable, respectively). The vertical black lines mark the times of the 8 April and 21 April 2009 local events, where the corresponding time shift can be estimated (by eye) as −14.25 and −15.1 s (black dots). The theoretical travel time difference for phase arrivals at the two stations was less than 0.07 s for all investigated phases and has been neglected in the computation. The seismograms were filtered between 0.01 and 0.5 Hz before calculating the cross-correlation. Time windows of 60 s length have been used

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahm, T., Heimann, S. & Bialowons, W. A seismological study of shallow weak micro-earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution. Nat Hazards 58, 1111–1134 (2011). https://doi.org/10.1007/s11069-011-9716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-011-9716-9

Keywords

Navigation