International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2279–2296 | Cite as

The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

  • Jürgen F. von Raumer
  • Heinz-Dieter Nesbor
  • Gérard M. Stampfli
Original Paper

Abstract

Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean preceding the general Late Variscan crustal shortening and oroclinal bending.

Keywords

Base metal and iron ores Rhenohercynian rift Rheic Ocean Subduction-related Devonian 

Notes

Acknowledgements

We appreciated the thoughtful suggestions and critical remarks from Lluis Fonboté (Geneva) and an unnamed reviewer, and we enjoyed the discussions with J Balintoni (Cluj), F Finger (Salzburg), H Flick (Heidelberg), D Large (Braunschweig), F Neubauer (Salzburg), A Schaefer (Bonn), B Schulz (Freiberg) and F Tornos (Madrid). G. Wörner (Göttingen) is thanked for performance of the geochemical analyses. We appreciated the understanding help from W C Dullo (Editor-in-Chief).

Supplementary material

531_2016_1425_MOESM1_ESM.pdf (623 kb)
Supplementary material 1 (PDF 622 kb)

References

  1. Aichler J, Fojt B, Vanecek M (1995) Metallogenesis. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 512–517CrossRefGoogle Scholar
  2. Amstutz GC, Zimmermann RA, Schot EH (1971) The Devonian mineral belt of Western Germany (The mines of Meggen, Ramsbeck and Rammelsberg), VIII. International Sedimentology Congress. 253–272Google Scholar
  3. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143CrossRefGoogle Scholar
  4. Balintoni I, Balica C, Ducea MN, Hann H-P (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411CrossRefGoogle Scholar
  5. Becker Th (2008) Devonian neritic-pelagic correlations—methods, case studies and problems. Final Meeting of IGCP 497 and 499. Abstract. In: Königshof P, Linnemann U (eds) From Gondwana and Laurussia to Pangaea: dynamics of oceans and supercontinents, 20th International Senckenberg Conference, Frankfurt, September 30–October 3, Abstracts and Programme, pp 25–28Google Scholar
  6. Dehmer J, Hentschel G, Horn M, Kubanek F, Nöltner T, Rieken R, Wolf M, Zimmerle W (1989) Die vulkanisch-kieselige Gesteinsassoziation am Beispiel der unterkarbonischen Kieselschiefer am Ostrand des Rheinischen Schiefergebirges. GeologiePetrographieGeochemie. Geol JB Hessen 117:79–138Google Scholar
  7. Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart crystalline complex, northwest Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411CrossRefGoogle Scholar
  8. Doublier MP, Potel S, Franke W, Roache T (2012) Very low-grade metamorphism of Rheno-Hercynian allochthons (Variscides, Germany): facts and tectonic consequences. Int J Earth Sci 101:1229–1252CrossRefGoogle Scholar
  9. Eckelmann K, Linnemann U, Bahlburg H, Jansen U, Königshof P, Nesbor H D, Gerdes A, Hofmann M, Berndt J, Nawrat J (2014a) The provenance of exotic Ordovician and Devonian sedimentary rock units in the Lindener Mark (SE Rhenich Massif), Central EuropeanVariscides, Germany)—a combined U–Pb and Hf isotope study of detrital zircons. Abstract. Gondwana 15—North meets South, Madrid (Spain) 14–18 July, 2014. Abstract Vol p. 56Google Scholar
  10. Eckelmann K, Nesbo H D, Königshof P, Linnemann U, Hofmann M, Lange JM, Sagawe A (2014b) Plate interactions of Laurussia and Gondwana during the formation of Pangaea—Constraints from U–Pb LA–SF–ICP–MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Res 1484–1500Google Scholar
  11. Emmermann KH, Hindel R, Krimmel M, Zinner HJ, (1993) Sulfid-Baryt-Mineralisationen in der südwestlichen Lahnmulde. Ein Beitrag zur Genese und Prospektion synsedimentär-exhalativer Vorkommen im Rheinischen Schiefergebirge. Mainzer geowissenschaftliche Mitteilungen, 22: 7–38Google Scholar
  12. Flick H, Nesbor HD (1988) Der Vulkanismus in der Lahnmulde. Jb Mitt Oberrh Ver N F 70:411–475Google Scholar
  13. Flick H, Nesbor HD, Behnisch R (1990) Iron ore of the Lahn-Dill type formed by diagenetic seeping of pyroclastic sequences—a case study on the Schalstein section at Gänsberg (Weilburg). Geol Rdsch 79:401–415CrossRefGoogle Scholar
  14. Floyd PA (1982) Chemical variation in Hercynian basalts relative to plate tectonics. J Geol Soc Lond 139:505–520CrossRefGoogle Scholar
  15. Floyd PA, Exley CS, Stone M (1983) Variscan magmatism in southwest England—discussion and synthesis. In: Hancock PL (ed) The variscan fold belt in the British Isles. Taylor & Francis, Bristol, pp 178–185Google Scholar
  16. Franke W (1989) Tectonostratigraphic units in the variscan belt of central Europe. Geol Soc Am Spec PAPER 290:67–89CrossRefGoogle Scholar
  17. Franke W (1995) Rhenohercynian foldbelt: autochthon and nonmetamorphic nappe units—stratigraphy. In: Dallmeyer D, Franke W, Weber K (eds) Pre-Permian geology of Central-and Western Europe. Springer, Berlin, pp 33–49CrossRefGoogle Scholar
  18. Franke W (2000) The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes-quantification and modelling in the variscan belt of central Europe. Geol Soc London Sp Pub 170, 459 pGoogle Scholar
  19. Franke W, Engel W (1986) Synorogenic sedimentation in the Variscan belt of Europe. Bulletin de la Societé géologique de France, 8(II1):25–33Google Scholar
  20. Franke W, Oncken O (1995) Zur prä-devonischen Geschichte des Rhenoherzynischen Beckens. Nova Acta Leopoldina NF 71:53–72Google Scholar
  21. Frischmuth E (1968) Sedimentation und Tektonik in der Subvariszischen Vortiefe von Süd—Portugal. Münstersche Forschungen zur Geologie und Paläontologie. Vol. 4, 99 p, MünsterGoogle Scholar
  22. Gawęda A, Burda J, Klötzli U, Golonka J, Szopa K (2016) Episodic construction of the Tatra granitoid intrusion (Central Western Carpathians, Poland/Slovakia): consequences for the geodynamics of Variscan collision and Rheic Ocean closure. Int J Earth Sci (Geol Rundsch). doi: 10.1007/s00531-015-1239-2
  23. Handy MR, Schmid DM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158. doi: 10.1016/j.earscirev.2010.06.002 CrossRefGoogle Scholar
  24. Herbig HG, Aretz M (2013) The Mississippian of the Jerada massif (NE Morocco)—more northwest European than Palaeotethyan affinities. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften SDGG 82:50Google Scholar
  25. Heyckendorf K (1985) Die unterdevonischen Lenne-Vulkanite im nordöstlichen Rheinischen Schiefergebirge: Beiträge zur Stratigraphie, Paläogeographie, Petrographieund Geochemie. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 68: 152Google Scholar
  26. Hochard C (2008) GIS and geodatabases application to global scale platetectonics modelling. PhD Thesis, University of Lausanne, SwitzerlandGoogle Scholar
  27. Huckriede H, Wemmer W, Ahrendt H (2004) Palaeogeography and tectonic structure of allochthonous units in the German part of the Rheno-Hercynian Belt (Central European Variscides). Int J Earth Sci (Geol Runsch) 93:414–431Google Scholar
  28. Hüneke H (2007): Pelagic carbonate ooze reworked by bottom currents during Devonian approach of the continents Gondwana and Laurussia. In: Viana AR, Rebesco M (eds.) Economic and palaeoceanographic significance of contourite deposits. Geol Soc London Spec Publ 276:299–328Google Scholar
  29. Hüneke H (2008) Formation of Givetian-Frasnian contourites in pelagic and hemipelagic settings prior to the virtual suturing of Gondwana and Laurussia: clues to palaeocirculation and continental reconstruction. Final Meeting 0f IGCP 497 and 499. Abstract. In: Königshof P, Linnemann U (eds) From Gondwana and Laurussia to Pangaea: Dynamics of oceans and supercontinents, 20th international senckenberg conference, Frankfurt, September 30–October 3, Abstracts and Programm, pp. 54–55Google Scholar
  30. Kirnbauer T (1991) Geologie, Petrographie und Geochemie der Pyroklastika des Unteren Ems/Unterdevon (Porphyroide) im südlichen Rheinischen Schiefergebirge. Geol Abh Hess 92:1–228Google Scholar
  31. Kohut M, Konecny P, Siman P (2006) The first finding of the iron Lahn-Dill mineralization in the Tatric Unit of the Western Carpathians. Mineral Polon—Spec Pap 28:112–114Google Scholar
  32. Königshof P, Nesbor HD, Flick H (2010) Volcanism and reef development in the Devonian: a case study from the Lahn syncline, Rheinisches Schiefergebirge (Germany). Gondwana Res 17:264–280CrossRefGoogle Scholar
  33. Kräutner HG (1970) Die hercynische Geosynklinalerzbildung in den rumänischen Karpaten und ihre Beziehungen zu der hercynischen Metallogenese Mitteleuropas. Miner Deposita 4:323–344CrossRefGoogle Scholar
  34. Kroll JM, Borchert W (1969) Geologisch-petrographische Untersuchungen an westdeutschen Kaolinlagerstätten—II. Kaolinlagerstätte Lohrheim bei Diez an der Lahn. Berichte Deutsche Keramische Gesellschaft 46:81–85Google Scholar
  35. Kroner U, Hahn T, Romer R L, Linnemann U (2007) The variscan orogeny in the saxo-thuringian zone—heterogenous overprint of cadomian/paleozoic peri-gondwana crust. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Spec Pap 423, 153–172Google Scholar
  36. Kubanek F, Zimmerle W (1986) Tuffe und kieselige Tonschiefer aus dem tieferen Unterkarbon der Bohrung Adlersberg (West-Harz). Geol Jahrb D 78:207–268Google Scholar
  37. Lardeaux JM, Ledru P, Daniel I, Duchene S (2001) The Variscan French Massif Central—a new addition to the ultrahigh pressure metamorphic “club”: exhumation processes and geodynamic consequences. Tectonophys 332:143–167CrossRefGoogle Scholar
  38. Large DE (2003a) Base metal (Cu, Pb, Zn) metallogeny of Europe—an overview. In: Kelly JG, Andrew CJ, Ashton MB, Boland MB, Earls G, Fusiardi L, Stanley G (eds) Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 1–29Google Scholar
  39. Large DE (2003b) The tectonic setting of base-metal mineralisation in the Rhenohercynian terranes of central Europe. In: Kelly JG, Andrew CJ, Ashton MB, Boland MB, Earls G, Fusiardi L, Stanley G (eds) Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 155–168Google Scholar
  40. Lippert H-J (1951) Zur Gesteins-und Lagerstättenbildung in Roteisenstein-Gruben des östlichen Dill-Gebietes. Abh Senckenb Naturforsch Ges, 485 (R. Richter-Festschrift). 1–29Google Scholar
  41. Lippert H-J, Flick H (1998) Vulkano-sedimentäre Roteisenerze vom Lahn-Dill-Typ. In: Kirnbauer T (ed) Geologie und hydrothermale Mineralisationen im rechtsrheinischen Schiefergebirge. Nassauischer Verein für Naturkunde, Wiesbaden, Sonderband 1, 121–128Google Scholar
  42. Love LG, Amstutz GC (1966) Review of microscopic pyrite from the Devonian Chattanooga Shale and Rammelsberg Banderz. Fortschr Mineral 43:273–309Google Scholar
  43. MacDonald WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  44. Martínez Catalán JR (2012) The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. Int J Earth Sci (Geol Rundsch) 101:1299–1314CrossRefGoogle Scholar
  45. Matte P (2001) The variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate; a review. Terra Nova 13:122–128CrossRefGoogle Scholar
  46. Meisl S (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 118–131CrossRefGoogle Scholar
  47. Menor-Salván C, Tornos F, Fernández-Remolar D, Amils R (2010) Association between catastrophic paleovegetation changes during Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits. Earth Planet Sci Lett 299:398–408CrossRefGoogle Scholar
  48. Nesbor HD (1997) Petrographie der vulkanischen Gesteine. In: Bender P, Lippert HJ, Nesbor HD (eds) Geologische Karte von Hessen 1:25,000, Blatt 5216 Oberscheld, 2nd edn. Erläuterungen. Hessisches Landesamt für Bodenforschung, Wiesbaden, pp 159–207Google Scholar
  49. Nesbor HD (2004) Paläozoischer Intraplattenvulkanismus im östlichen Rheinischen SchiefergebirgeMagmenentwicklung und zeitlicher Ablauf. Geologisches Jahrbuch Hessen 131:145–182Google Scholar
  50. Nesbor HD (2007) Paläozoischer Vulkanismus im Lahn-Dill-Gebietsüdliches Rheinisches Schiefergebirge (Exkursion E am 12 April 2007). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge 89:193–216CrossRefGoogle Scholar
  51. Nesbor HD, Buggisch W, Flick H, Horn M, Lippert HJ (1993) Vulkanismus im Devon des Rhenoherzynikums. Fazielle und paläogeographische Entwicklung vulkanisch geprägter mariner Becken am Beispiel des Lahn-Dill-Gebietes. Geol Jahrb Hessen 98:3–87Google Scholar
  52. Oczlon MS (1992) Examples of Palaeozoic Contourites, Tempestites and Turbidites—Classification an Palaeogeographic Approach. Heidelberger Geowissenschaftliche Abhandlungen, 53: 57–159Google Scholar
  53. Oczlon MS (1994) North Gondwana origin for exotic Variscan rocks in the Rhenohercynian zone of Germany. Geol Rundsch 83:20–31CrossRefGoogle Scholar
  54. Oliveira JT (1990) South Portuguese zone: introduction. Stratigraphy and synsedimentary tectonism. In: Dallmeyer RD, Martínez GE (eds) PreMesozoic geology of iberia. Springer Verlag, Berlin, pp 333–347CrossRefGoogle Scholar
  55. Oliveira JT, Horn M, Paproth E (1979) Preliminary note on the stratigraphy of the Baixo Alentejo Flysch Group, Carboniferous of Southern Portugal and on the palaeographic development, compared to corresponding units in Northwest Germany. Commun Serv Geol Portugal 65:151–168Google Scholar
  56. Oncken O, Weber J (1995) The structure of the Rhenohercynian. In: Dallmeyer RD, Franke W, Weber K (eds) Tectonostratigraphic evolution of the Central and East European orogens. Springer, Berlin, Heidelberg, pp 50–58Google Scholar
  57. Oncken O, von Winterfeld C, Dittmar U (1999) Accretion and inversion of a rifted passive margin—the Late Paleozoic Rhenohercynian fold and thrust belt. Tectonics 18:75–91CrossRefGoogle Scholar
  58. Oncken O, Plesch A, Weber J, Ricken W, Schrader S (2000) Passive margin detachment during arc-continent collision (Central European Variscides). In: Franke W, Haak V, Oncken O, Tanner D (eds). Orogenic processes-quantification and modelling in the variscan belt of central Europe. Geol Soc London Sp Pub 129: 199–216Google Scholar
  59. Pereira MF, Chichorro M, Brandão Silva J, Ordóñez-Casado B, Lee JKW, Williams Ian S (2012) Early carboniferous wrenching, exhumation of high-grade metamorphic rocks and basin instability in SW Iberia: constraints derived from structural geology and U-Pb and 40Ar–39Ar geochronology. Tectonophys 558–559:28–44CrossRefGoogle Scholar
  60. Quesada C (1998) A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt. Miner Deposita 33:31–44CrossRefGoogle Scholar
  61. Quesada C (2006) The Ossa-Morena Zone of the Iberian Massif: a tectonostatigraphic approach to its evolution. Z dt Ges Geowiss 157:585–595Google Scholar
  62. Reischmann T, Anthes G (1996) Geochronology of the mid-German crystalline rise west of the River Rhine. Geol Rundsch 85:761–774CrossRefGoogle Scholar
  63. Reischmann T, Anthes G, Jaeckel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Mineral Petrol 72:29–44CrossRefGoogle Scholar
  64. Ribeiro A (1996) SW-Iberia. In: Gee DG, Zeyen HJ (eds) Lithosphere dynamics: origin and evolution of continents. Europrobe 1996 ESF Research programme. Uppsala Univrsity, pp: 90–94Google Scholar
  65. Salamon M (2008) Middle Devonian olisthostromes (debrites) in the eastern Rheinish massiv—evidence for an active rifting of the Rhenic Ocean. Abstract. Final Meting of IGCP 497 and IGCP 499, Frankfurt, September 30–October 3, Abstract Volume, pp. 124–127Google Scholar
  66. Salamon M, Königshof P (2010) Middle Devonian olistostromes in the Rheno-Hercynian (Rheinisches Schiefergebirge)—an indication of back arc rifting on a passive margin of Laurussia? Gondwana Res 17:281–291CrossRefGoogle Scholar
  67. Scherp A (1983) Unterdevonische Schmelztuffe im rechtsrheinischen Schiefergebirge. Neues Jb Geol Paläontol Monat 1983:47–58Google Scholar
  68. Schulz B, Steenken A, Siegesmund S (2008) Geodynamic evolution of an Alpine terrane—the austroalpine basement to the south of the Tauern Window as a part of the Adriatic plate (eastern Alps). In: Siegesmund S, Fügenschuh B, Froitzheim N (eds.) Tectonic aspects of the alpine-dinaride-carpathian system. Geol Soc Lond Spec Pub 298, 5–44Google Scholar
  69. Silva JB, Oliveira JT, Ribeiro A (1990) Structural outline. In: Dallmeyer RD, Martínez GE (eds) PreMesozoic geology of iberia. Springer Verlag, Berlin, pp 348–362CrossRefGoogle Scholar
  70. Smith AG (1996) Some aspects of the Phanerozoic paleogeographic evolution of Europe. Zeitschrift der Deutschen Geologischen Gesellschaft 147:147–168Google Scholar
  71. Sommermann AE, Meisl S, Todt W (1992) Zirkonalter von 3 verschiedenen Metavulkaniten aus dem Südtaunus. Geol Jahrb Hess 120:67–76Google Scholar
  72. Sommermann AE, Anderle HJ, Todt W (1994) Das Alter des Quarzkeratophyrs der Krausaue bei Rüdesheim am Rhein (Bl 6013 Bingen, Rheinisches Schiefergebirge). Geol Jahrb Hess 122:143–157Google Scholar
  73. Sperling H (1986) Das Neue Lager der Blei-Zink-Erzlagerstätte Rammelsberg. Geol Jahrb D 85:5–177Google Scholar
  74. Stampfli GM, von Raumer JF, Borel G (2002) The Paleozoic evolution of pre-Variscan terranes: FROM Gondwana to the variscan collision. In: Martínez Catalán JR, Hatcher RD Jr, Arenas R, Díaz Garcia F (eds) Variscan-appalachian dynamics: the building of the late paleozoic basement. Geol Soc Am Spec Pap 364: 263–280Google Scholar
  75. Stampfli GM, Hochard C, von Raumer JF (2006) Reconstructing the Palaeozoic Gondwana margin and its redistribution: new aspects: Geophys Res Abstr, 8, EGU06–A-02708Google Scholar
  76. Stampfli GM, von Raumer JF, Wilhem C (2011) The distribution of Gondwana derived terranes in the early Paleozoic. In: Gutiérrez Marco JC, Rábano I, García-Bellido I (eds) The ordovician of the world. Instituto Geológico y Minero de España, Madrid, Cuadernos del Museo Geominero, 14: 567–574Google Scholar
  77. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer JF (2013) The geodynamics of Pangea formation. Tectonophys 593:1–19CrossRefGoogle Scholar
  78. Stets J, Schäfer A (2009) The Siegenian delta: land-sea transitions at the northern margin of the Rhenohercynian Basin. In: Königshof P (ed) Devonian change: case studies in palaeogeography and palaeoecology. Geol Soc Lond Spec Publ 314: 37–72Google Scholar
  79. Stets J, Schäfer A (2011) The lower devonian rhenohercynian rift 20 Ma of sedimentation and tectonics (Rhenish Massif, NW-Germany). Z dt Ges Geowiss, 162: 93–115Google Scholar
  80. Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307CrossRefGoogle Scholar
  81. Van Amerom HWJ, Heggemann H, Herbig HG, Horn M, Korn D, Nesbor HD, Schrader S (2001) Das Grauwacken-Profil (Ober-Viseum) des Steinbruchs Dainrode im Kellerwald (NW Hessen). Geol Jahrb Hess 129:5–25Google Scholar
  82. Von Raumer J, Stampfli GM (2008) The birth of the Rheic Ocean—early Palaeozoic subsidence patterns and tectonic plate scenarios. Tectonophys 461:9–20CrossRefGoogle Scholar
  83. Von Raumer JF, Vesela P, Finger F, Stampfli GM (2013) Durbachites-Vaugnerites—a geodynamic marker in the central European Variscan orogen. Terra Nova 26:85–95CrossRefGoogle Scholar
  84. Von Raumer JF, Nesbor HD, Stampfli GM (2014) The plate-tectonic interpretation of the Rhenohercynian ore-sites. SDGG 85:613Google Scholar
  85. Von Raumer J, Stampfli GM, Arenas R, Sánchez Martínez S (2015) Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int J Earth Sci (Geol Rundsch) 104:1107–1121CrossRefGoogle Scholar
  86. Walliser OH (1981) The geosynclinal development of the Rheinische Schiefergebirge (Rhenohercynian zone of the Variscides, Germany). Geol Mijnbouw 60:89–96Google Scholar
  87. Werner W, Walther HW (1995) Metallogenesis. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 87–95CrossRefGoogle Scholar
  88. Will TM, Lee SH, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald-Spessart basement, Mid-German Crystalline Zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42CrossRefGoogle Scholar
  89. Zeh A, Gerdes A (2010) Baltica- and Gondwana derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic Ocean. Gondwana Res 17:254–263CrossRefGoogle Scholar
  90. Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the Western Tethys. Am Ass Petrol Geol Memoir 43:198Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dépt. de GéosciencesUniversitéFribourgSwitzerland
  2. 2.Hessisches Landesamt für Naturschutz Organization, Umwelt und Geologie (HLNUG)WiesbadenGermany
  3. 3.Earth Sciences Institute (ISTE) GeopolisUNILLausanneSwitzerland

Personalised recommendations