Phase envelopes
The predicted phase envelopes of cumulative fluids generated from Wealden Shale rock samples at five transformation ratios were calculated using PVTsim© and are displayed in Fig. 5. The shape of the phase envelopes strongly depends on the composition of the fluids and thus on maturity or precursor origin; the quantity of light hydrocarbons dissolved in the liquid phase (GOR) has the largest influence. As can be deduced from Fig. 6, the Wealden Shale samples possess a high oil generation potential of around 90 % throughout maturation and hence a low gas generation potential (8–12 %) of which methane accounts for one-third. Thus, “loaf-shaped” phase envelopes, which are characteristic for black oils, can be observed for all investigated samples, but nevertheless the phase envelopes of the homogeneous samples 2–4 are “flatter” than those of the more heterogeneous sample 1. This can be explained by a slightly higher gas generation potential of the latter sample in comparison with samples 2–4. The cricondentherm and critical point are influenced by molecular weight and density of the C7+ fraction. High molecular weights and densities result in a high cricondentherm, a low GOR and a low P
sat, a feature qualitatively observable for all investigated samples. Homogeneous samples 2–4 show almost identical pT-characteristics with similar cricondenbar (138–141 bar) and cricondentherm values (564–574 °C) as well as more or less similar critical points ranging between 466 and 481 °C, respectively, 109 and 116 bar at a transformation ratio of 70 %. The fluid composition at 70 % TR can be viewed as being characteristic of cumulatively generated primary petroleum, whereas at 90 % TR cracking of C6+ compounds might have already led to the formation of secondary gas. The more heterogeneous sample 1 exhibits phase envelopes with bubble-point curves extending to higher cricondenbars (176 bar at 70 % TR) and dew point curves extending to lower cricondentherms (535 °C at 70 % TR). This is consistent with the sample’s slightly higher gas-generative potential induced by differences in the organic matter structure of petroleum precursors (di Primio et al. 1998).
In general and with increasing maturity (10–90 % TR), a systematic decrease in cricondentherm and increase in cricondenbar can be expected for type II and type III kerogens, as well as a shift of the critical point towards higher pressures and lower temperatures (di Primio et al. 1998). Interestingly, for all investigated samples, critical points move towards higher pressures but not progressively to lower temperatures with increasing maturity. Both cricondentherm and cricondenbar partly increase with maturity. Some samples show at least a “crossover area” in which critical points move first to higher temperatures before decreasing to lower ones while they steadily increase in pressure. Maturation of a type I kerogen proceeds within a very limited temperature interval in which the OM (here mainly remains of B. braunii) is converted into petroleum at a very fast rate, that is, within a temperature interval of 20 °C for samples 2–4 and within a temperature interval of 32 °C for sample 1 (Table S2, Fig. 3). Thus, the gas composition as well as the GOR does not change significantly throughout maturation as it does for more heterogeneous kerogen types II and III (Kuhn et al. 2010). Consequently, the evolution of the shape of phase envelopes for sample 1 is entirely consistent with its purported lacustrine origin.
Phase behaviour prediction
Phase behaviour of generated petroleum fluids for four early mature Wealden Shale samples from four depth intervals of well Ex-A (Table 1) was calculated for temperatures corresponding to transformation ratios of 10, 30, 50, 70 and 90 % (see Table S3). Secondary cracking of generated products at high temperatures was only considered theoretically in the scope of this work as the fate of migrating primary fluids was of prime importance. To predict the phase state of generated products within the sedimentary column, PhaseKinetic results are compared to the provided 1D basin model for well Ex-B which includes an average standard linear geopressure gradient of 100 bar/km and, in the case of the LSB, an average linear geothermal gradient of up to 34.4 °C/km (as extracted from the provided model of Bruns et al. 2013a, b). As the lithostratigraphic column of the Berriasian Wealden formation is dominated by organic matter deposition in a lacustrine freshwater environment with intercalations of only short-lived marine transgressions (Elstner and Mutterlose 1996; Mutterlose and Bornemann 2000), we applied kinetic parameters of samples comprising lacustrine type I organic matter of either heterogeneous character, represented by sample 1 (Fig. 7a), or homogeneous character, represented by sample 4 (Fig. 7b).
Even though increased amounts of vitrinite and inertinite were found in samples of well Ex-B, locally indicating input of terrestrial higher land-plant-derived organic matter (Rippen et al. 2013) or sedimentological differences in the facies of the organic-rich interval, the major part of the petroleum-generating organic matter fraction can be assumed to have also consisted of the remains of the lacustrine, algal material found in well Ex-A. In addition, high amounts of pyrobitumen found in samples of well Ex-B rather represent migrated than in situ petroleum residues and therefore impregnated adjacent rather than initial source intervals of the Wealden succession (discussed in the following; “second scenario”). Thus, kinetics of petroleum generation and evolution of physical properties of the generated fluids from representative intervals of well Ex-B most likely were largely similar to those predicted for samples from well Ex-A and can be used in the 1D basin model.
The Wealden Shale was deposited during the earliest Cretaceous (Berriasian) from 145 to 137 Mya and instantly underwent a rapid burial to 4,800 m within 56 Ma (until 89 Mya) in the area of well Ex-B (Figs. 1, 7). During subsidence to the maximum burial depth, the deposited organic matter passed through the oil and gas generation window. The onset of primary hydrocarbon generation from shales comprising stable, homogeneous type I organic matter as found in sample 4 occurred later, ca. 115 Mya at a depth of ≈2,670 m, whereas the generation from less stable, heterogeneous type I organic matter as found in sample 1 occurred earlier, ca. 122 Mya at ≈2,100 m depth. This corresponds to subsurface (hydrostatic) pressures of ≈267 and ≈210 bar, respectively. With ongoing burial maximum petroleum generation rates (T
max) were reached at 110 Mya for sample 4 and at 117 Mya for sample 1, whereas the offset of primary petroleum generation (TR = 90 %) was reached at 105 Mya (3,313 m) for sample 4 and at 111 Mya (2,950 m) for sample 1. Thus and in accordance with the bulk kinetic predictions (Table S2), the petroleum generation from stable, homogeneous lacustrine organic matter starts at greater depth (570 m deeper) and higher temperatures than petroleum generation from less stable, heterogeneous lacustrine organic matter. The generation window for the former one (sample 4) extends over a smaller depth interval (650 m) and time span (9.5 Ma) in comparison with the latter one (sample 1), where the generation window extends over 11 Ma and a depth interval of 850 m. According to the phase envelopes (Fig. 5), all hydrocarbons generated between 10 and 90 % TR, independently of organic matter origin or heterogeneity, occur in a single-phase state as undersaturated liquid petroleum at depth of generation because hydrostatic subsurface pressures of 268–332 bar for sample 4 and 210–293 bar for sample 1 are higher than geologically realistic bubble-point pressures which range from 70 to 95 bar for sample 4 and from 90 to 135 bar for sample 1. The given bubble-point pressure can be deduced from the intersection of the hydrostatic pressure gradient with the phase envelopes in Fig. 5.
As can be revealed from the burial history of the LSB (Fig. 1), the organic and inorganic matter of the Wealden Shale experienced a relatively simple structural evolution of burial to maximum depth and subsequent geological uplift to more or less present-day depth. In the following, we discuss the fate of generated petroleum fluids, that is, their phase behaviour within the sediment column, in the light of two “end-member” scenarios. In the first one, termed “unconventional setting”, zero expulsion of generated hydrocarbon products is assumed, whereas in the second, more realistic one, expulsion of the major part of generated hydrocarbons is assumed.
During geological uplift in the Upper Cretaceous (Figs. 1, 7), subsurface pressure and temperature decreased. For retained hydrocarbons in an “unconventional setting”, phase separation might have occurred during the uplift phase once the bubble-point pressures and temperatures of the generated hydrocarbon fluids from samples 1 and 4 were reached. As described previously, phase envelopes of sample 1 exhibit elevated bubble-point pressures (see Table S3 for a hypothetical reservoir temperature of 100 °C) in comparison with those of the homogeneous sample 4. Petroleum fluids generated from homogeneous Wealden Shale samples 2–4 show bubble-point pressures of around 95 bar at 90 % TR which corresponds to a theoretical (hydrostatic pressure) depth for phase separation of around 950 m. On the other hand, petroleum fluids generated from the more heterogeneous sample 1 possess a bubble point of 135 bar at 90 % TR which corresponds to a depth of around 1,350 m. As can be revealed from well data and the 1D basin model, the Wealden Shale formation at the well location of Ex-B is buried to a present-day depth between 932 and 1,740 m. Nevertheless, at the Cretaceous-Tertiary border (67–63 Mya), the Wealden formation was further uplifted to a minimum depth of 717 m at its top and 1,525 m at its bottom. Thus and assuming zero secondary cracking (unlikely), retained fluids within the upper depth interval of well Ex-B, derived from both homogeneously and heterogeneously type I organic matter, would have reached their bubble-point pressure at hydrostatic pressures of approximately 70–90 bar and would have dissolved into a two-phase state of coexisting oil and gas. In contrast, petroleum fluids generated from homogeneous lacustrine organic matter and trapped within older Wealden horizons in times of maximum uplift were all positioned at depth levels below ≈950 m and therefore experienced hydrostatic pressures exceeding their bubble points at 95 bar. They could have only occurred as a single undersaturated oil phase. The latter is only true for the 4th depth interval of the here investigated sample set assuming composition of retained fluids derived from organic matter resembling that of the more heterogeneous sample 1. In the 2nd and 3rd depth interval, those fluids (bubble-point pressures of ≈135 bar) would have undergone phase separation.
Secondary cracking processes affecting the petroleum composition of primarily generated fluids are completely neglected in this scenario. Nevertheless, it is very likely that “near complete” secondary cracking of retained hydrocarbons took place by exposure to higher temperatures during times of maximum burial to maturity levels around 2.2–2.4 % VRr (Rippen et al. 2013). It should be noted here that for the two lacustrine Wealden Shale samples compositional secondary cracking kinetics were determined using MSSV pyrolysis at three different heating rates and the GORFIT model (Mahlstedt et al. 2013). Presentation of those results is outside the scope of this paper, but it can be stated here that the end of the secondary conversion of primary petroleum to gas was calculated to occur at ~2.2 % easy R
0 for products of sample 1 and ~2.3 % easy R
0 for products of sample 4 (3 °C/Ma heating rate). Furthermore, it is well known that in-source secondary cracking proceeds much faster than in-reservoir secondary cracking and can be generally assumed to be completed before 2.0 % VR (Schenk et al. 1997a, b; Dieckmann et al. 1998; Hill et al. 2007; Horsfield et al. 1992). Generation of secondary gas from primary petroleum products within the Wealden sequence would therefore leave behind a pyrobitumen and, still assuming zero expulsion, fluids characterised by much higher GORs and therefore phase envelopes with much higher cricondenbars and lower cricondentherms (Fig. 8, compare to Fig. 17 in di Primio et al. (1998)). Consequently, retained fluids in all depth intervals of well Ex-B should occur at maximum burial depth as an undersaturated gas or condensate phase, which, depending on its GOR or gas dryness, might not be able to reach its dew point and consequently two-phase state even during uplift to surface pT-conditions. Looking into the profile of thermovaporisation gas chromatographic fingerprints of samples from well Ex-B (Fig. 10 in Rippen et al. 2013), it becomes clear that, in concordance with the above discussed, low overall amounts of free compounds within the lower three depth intervals can be described as gas condensates. Nevertheless, in the upper interval, at 2.2 % VRr, paraffinic hydrocarbons dominated by intermediate chain length (n-C13–15) and essentially no gas are encountered which are therefore unlikely to reflect originally retained petroleum compounds, at least when following the here presented thermal burial and uplift history. In this context, impregnation of rocks within this interval by migrated oil of for now unknown origin is more likely, whereas timing of migration and emplacement is as well unknown. Impregnating oils probably originate from another source rock horizon within the LSB (Wealden, Posidonia Shale or Carboniferous strata) that generated more recently.
An additional scenario for phase separation, that is, phase separation during migration of expelled hydrocarbons into lower pressurised depth regions, is thinkable and more realistic than the previously described scenario. Wealden Shales can be described as a type I source rock if not oil shale characterised by HI values exceeding 600 mg HC/g TOC. According to Pepper and Corvi (1995), the major amount of the TOC of those kinds of rocks is reactive kerogen and can be converted into expellable petroleum because their sorptive capacity, defined by the amount of inert kerogen (which is low as the HI is high), is low. Usually up to 90 % of the total organic matter of oil shales such as the Green River Shale is converted to oil and is expelled. Due to the very narrow maturity range over which petroleum formation is predicted to proceed for the investigated lacustrine samples, a rapid pressure built-up can be expected to occur in course of the quick volume expansion of the reaction kerogen to oil and gas. This might induce primary migration rather via natural fracturing of the rock than via the pore network (Düppenbecker et al. 1991) as pressure built-up within the pores quickly exceeds rock integrity. A micro-fracture system predominantly parallel to the bedding plane is often observed in high-quality oil-generating source rocks which allowed an outward flow of oil through the spontaneously generated fracture system leading to pressure release. Formation of such a fracture system in the case of the Wealden Shale is indicated by bitumen (pyrobitumen) accumulation within the matrix, pore spaces as well as natural fractures of samples from overmature well Ex-B (compare Rippen et al. 2013). One known conventional oil accumulation believed to have been sourced already during Lower Cretaceous times, prior to inversion, by the Wealden Shale is the Bramberge oil field in Northern Germany (Grassmann et al. 2006); hence, migration is documented as having taken place.
For phase separation to occur during upwards migration, large distances would have had to be overcome: for fluids derived from less homogeneous and less stable lacustrine type I organic matter (resembling sample 1) vertical distances of approximately 1 km (generation at 210–293 bar for 10–90 % TR, bubble-point pressure ≈135 bar) and for fluid derived from homogeneous, stable lacustrine type I organic matter (resembling samples 2–4) vertical distances of approximately 2 km (generation at 259–333 bar for 10–90 % TR, bubble-point pressure ≈95 bar). Phase separation during vertical migration is very hard to model and beyond the scope of the work described here. Nevertheless, there might be indication of phase separation during long distance, lateral migration upwards within the source bed or adjacent strata. This indication can be inferred from the discussed bitumen filled natural fractures observed in samples of well Ex-B in connection with the still very high TOC contents of those samples compared with equivalent immature samples from well Ex-A (compare Rippen et al. 2013). If high contents of the original TOC were indeed expelled, as it is usually the case for type I source rocks, TOC contents at higher maturities should be significantly lower. Thus, it could be argued that organic matter within high maturity samples is largely derived from upwards migrated petroleum which reached bubble-point pressures and experienced phase separation, with the exsolving gas phase being lost and the oil phase, enriched in high molecular weight paraffinic compounds, being left behind as immobile bitumen plugging the pore space. Evidence for such a process might be derived from methane fluid inclusions within calcite fracture fillings of horizontal veins found in close association with the here investigated organic matter-rich horizons in the four depth intervals of well Ex-B (Lüders and Plessen 2012; unpublished results). Those horizontal veins are usually the result of mineralisation of hydraulic expulsion fractures, which developed, in close relation to the previous discussed natural fracturing during petroleum generation, in the course of exsolution of gas from a saturated oil phase, a process causing volume expansion and overpressure.
Please keep in mind that the latter scenario is still speculative and complete fluid movement were not attempted to being modelled within the scope of this work. The discussion is rather motivated by showing possibilities of how PhaseKinetics data can be applied into geological systems.