Skip to main content

Advertisement

Log in

Thermal maturity evolution and hydrocarbon generation in the Dibeilla oil field, Termit Basin, Eastern Niger: an organic geochemical and basin modeling approach

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Termit Basin is a Cretaceous–Tertiary multi-rift graben, one of the eastern Niger basins. Belonging to this basin, the Dibeilla oil field is one of the most petroliferous oil fields in the Agadem Block. It contains multiple source rocks, but the origin of the hydrocarbons is not fully understood. The source rocks and crude oil samples from seven wells were examined using analytical techniques such as Rock–Eval pyrolysis, GC/GC–MS, vitrinite reflectance measurements, and basin modeling. Results indicate that the Upper Cretaceous (Donga and Yogou formations) and the Eocene Sokor-1 Formation have oil and gas generation potential with II/III and III type kerogens. The former were deposited in a clay-rich anoxic-suboxic marine environment with a mixture of aquatic and predominantly terrestrial organic matter and are thermally mature raching peak of oil-generation. The latter is mainly rich in terrestrial organic material deposited in a more oxic lacustrine to deltaic environment and reaches the early oil-generation stage. The Oligocene Sokor-2 Formation is oil-prone with Type I kerogens that are at an immature to marginally mature stage. The two peak values of paleo-heat (60 mW/m2) are the response of the Cretaceous syn-rifting period with two phases and the Paleogene phase of the rifting cycle, which exerted a significant influence on the source rocks’ thermal maturity. The oil-source correlation reveals that oil production and preservation in the basin must extend to the deeper Campanian reservoirs. This is an important discovery that will help increasing the present-day oil production from the Eocene reservoirs of the Niger Termit Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abeed Q, Leythaeuser D, Littke R (2012) Geochemistry, origin and correlation of crude oils in Lower Cretaceous sedimentary sequences of the southern Mesopotamian Basin, southern Iraq. Org Geochem 46:113–126

    Article  Google Scholar 

  • Ahmed K, Liu K, Paterne M, Kra K, Kuttin A, Malquaire KR, Ngum K (2020) Anatomy of eastern Niger rift Basin with specific reference of its petroleum systems. Int J Geosci 11:305–324

    Article  Google Scholar 

  • Ahmed YL (1989) Pétrologie et relations structurales des volcanites Cénozoïques du Niger oriental: Fossé tectonique du Tefidet (Aïr), thèse de doctorat, Université D’Orléans, p. 154

  • Akinlua A, Ajayi TR, Adeleke BB (2007) Organic and inorganic geochemistry of northwestern Niger Delta oils. Geochem J 41:271–281

    Article  Google Scholar 

  • Alexander R, Larcher AV, Kagir I, Price PL (1988) The use of plant-derived biomarker for correlation of oils with source rocks in the Cooper/Eromango basin systems, Australia. J APEA 28:310–323

    Google Scholar 

  • Alexander R, Kagi RI, Rowland SJ, Sheppard PN, Chirila TV (1985) The effects of thermal maturity on distributions of dimethylnaphthalenes in some ancient sediments and petroleums. Geochimica et Cosmochimica Acta 49:385–395

    Article  Google Scholar 

  • Allen PA, Allen JR (1990) Basin Analysis Principles and Applications. Blackwell Scientific Publications, Oxford, p 451

    Google Scholar 

  • Asif M, Fazeelat T, Grice K (2011) Petroleum geochemistry of the Potwar Basin, Pakistan: 1. oil-oil correlation using biomarkers, δ13C and δD. Org Geochem 42:1226–1240

    Article  Google Scholar 

  • Asif M, Alexander R, Fazeelat T, Pierce K (2009) Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis. Org Geochem 40:895–901

    Article  Google Scholar 

  • Atfy El H, Brocke R, Uhl D, Ghassal B, Stock AT, Littke R, (2014) Source rock potential and paleoenvironment of the Miocene Rudeis and Kareem formations, Gulf of Suez, Egypt: An integrated palynofacies and organic geochemical approach. Int J Coal Geol. 131, 326–343

  • Bennett B, and Olsen SD (2007) The influence of source depositional conditions on the hydrocarbon and nitrogen compounds in petroleum from central Montana, USA: Organic Geochemistry, v. 38, 935–956. doi:https://doi.org/10.1016/j.orggeochem.2007.01.004

  • Binks RM and Fairhead JD (1992) A plate tectonic framework for the evolution of the Cretaceous rift basins in West and Central Africa. In: P.A. Ziegler (Editor), Geodynamics of Rifting, Volume II. Case History studies on Rifts: North and South America, Africa-Arabia: Tectonophysics, 213: 141–151

  • Bordenave ML (1993) Applied Petroleum Geochemistry. Editions Technip, Paris

    Google Scholar 

  • Boreham CJ (1995) Origin of petroleum in the Bowen and Surat Basins: Geochemistry Revisited. Austr Petrol Explor Assoc J 35(1):579–612

    Google Scholar 

  • Boreham CJ, Crick IH, Powell TG (1988) Alternative calibration of the methylphenanthrene index against vitrinite reflectance: Application to maturity measurements on oils and sediments. Org Geochem 12:289–294

    Article  Google Scholar 

  • Brassell SC, Eglinton G, Maxwell JR, Philp RP (1978) Natural background of alkanes in the aquatic environment. In: Hutzinger, O., van Lelyveld, L.H., Zoeteman, B.C.J. (Eds.), Aquatic Pollutants: Transformation and Biological Effects. Pergamon, Oxford, 69–86

  • Bray EE, Evans ED (1965) Hydrocarbons in non-reservoir-rock source beds. Am Assoc Pet Geol Bull 49:248–257

    Google Scholar 

  • Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15

    Article  Google Scholar 

  • Chandra K, Mishra CS, Samanta U, Gupta A, Mehrotra KL (1994) Correlation of different maturity parameters in the Ahmedabad-Mehsana block of the Cambay basin. Org Geochem 21:313–321

    Article  Google Scholar 

  • Chang E, Zung LS (2017) 3D Reservoir Characterization of Field Deta, Termit Basin, Niger: Springer Singapore, 323–335. Doi: https://doi.org/10.1007/978-981-10-3650-7_28

  • Chang XC, Wang TG, Li QM, Cheng B, Tao XW (2013) Geochemistry and possible origin of petroleum in Palaeozoic reservoirs from Halahatang Depression. J Asian Earth Sci. 74, 129e141

  • Chen JY, Bi YP, Zhang JG et al (1996) Oil-source correlation in the Fulin basin, Shengli petroleum province, East China. Org Geochem 24:931–940

    Article  Google Scholar 

  • Cheng P, Xiao XM, Tian H, Huang BJ, Wilkins RWT, Zhang YZ (2013) Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin, offshore South China Sea. Mar Pet Geol 40:85–98

    Article  Google Scholar 

  • Chosson P, Connan J, Dessort D, Lanau C (1992) In vitro biodegradation of steranes and terpanes: A clue to understanding geological situations, in Moldowan, J.M., Albrecht, P., and Philip, R.P., eds., Biological Markers in Sediments and Petroleum: Englewood Cliffs, New Jersey, Prentice Hall, 320–349

  • Chung HM, Rooney MA, Toon MB, Claypool GE (1992) Carbon isotope composition of marine crude oils. Am Asso Petrol Geol Bull 76:1000–1007

    Google Scholar 

  • Chung HM, Brand SW, Grizzle PL (1981) Carbon isotope geochemistry of Paleozoic oils from Big Horn Basin. Geochim Cosmochim Acta 45:1803–1815

    Article  Google Scholar 

  • Clark JP, Philip RP (1989) Geochemical characterization of evaporate and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta. Canadian Petrol Geol Bull 37:401–416

    Google Scholar 

  • Connan J (1984) Biodegradation of crude oils in reservoirs. In: Advances in Petroleum Geochemistry, (J. Brooks and D. H. Welte, eds.). Academic Press, London, Vol. 1, 299–335.

  • Corbett RE, Smith RA (1969) Lichens and fungi. Part VI: dehydration rearrangements of 15-hydroxyhopanes. J Chem Soc C Org 1:44–47

    Article  Google Scholar 

  • Curiale JA (2008) Oil-source rock correlations – limitations and recommendations. Org Geochem 39:1150–1161

    Article  Google Scholar 

  • Dahl J, Moldowan JM, Teerman SC, McCaffrey MA, Sundararaman P, Stelting CE (1994) Source rock quality determination from oil biomarkers I: A new geochemical technique. Am Asso Petrol Geol Bull 78:1507–1528

    Google Scholar 

  • Daly MC, Chorowicz J, Fairhead JD (1989) Rift basin evolution in Africa: the influences of reactivated steep basement shear zones: Geological Society, London, Special Publications, vol. 44, 309–334. http://www.springer.com/ASTI, last accessed 2016/11/21

  • Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  Google Scholar 

  • Dong T, He S, Yin S, Wang D, Hou Y, Guo J (2015a) Geochemical characterization of source rocks and crude oils in the upper Cretaceous Qingshankou formation, Changling Sag, southern Songliao basin. Mar Petrol Geol 64:173–188

    Article  Google Scholar 

  • Duan Y, Zheng CY, Wang ZP, Wu BX, Wang CY, Zhang H, Zhang XB, Qian YR, Zheng GD (2006) Biomarker geochemistry of crude oils from Qaidam basin, northwestern China. J Petrol Geol 29:175–188

    Article  Google Scholar 

  • Duan Y, Ma LH (2001) Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet plateau, China). Org Geochem 32:1429–1442

    Article  Google Scholar 

  • Duan Y (2000) Organic geochemistry of recent marine sediments from the Nansha Sea China. Org Geochem 31:159–167

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • England WA (2007) Reservoir geochemistry – A reservoir engineering perspective. J Petrol Sci Eng 58(3–4):344–354. https://doi.org/10.1016/j.petrol.2005.12.012

    Article  Google Scholar 

  • Escobar M, Márquez G, Inciarte S, Rojas J, Esteves I, Malandrino G (2011) The organic geochemistry of oil seeps from the Sierra de Perijá eastern foothills, Lake Maracaibo Basin, Venezuela. Org Geochem 42:727–738

    Article  Google Scholar 

  • Espitalié J, Marquis F, Barsony I (1984) Geochemical logging. In: Voorhees KJ (ed) Analytical pyrolysis: techniques and applications. Butterworth, London, pp 276–304

    Chapter  Google Scholar 

  • Fairhead JD (1986) Geophysical controls on sedimentation in the African Rift Systems. In: Sedimentation in the African Rifts (Eds. Frostick et al.) Geol Soc Sp Publ 23: 19–27.

  • Fan P, Philp RP, Li ZX, Ying GG (1990) Geochemical characteristics of aromatic hydrocarbons of crude oils and source rocks from different sedimentary environments. Org Geochem 16:427–435

    Article  Google Scholar 

  • Fang X, Meng QX, Sun MZ, Wang ZD, Xu Y (2008) Characteristic of biomarkers in saturated hydrocarbon in coal of carbonaceous mudstone and oils from the Lower Jurassic coal measures in the Turpan Basin. Acta Sedimentol Sin 26(5):891–895

    Google Scholar 

  • Faure H (1966) Reconnaissance géologique des formations sédimentaires post paléale-zoïques du Niger oriental: Memoires du Bureau de Recherches Géologiques et Minières, vol. 47, p. 629

  • Farrimond P, Bevan JC, Bishop AN (1996) Hopanoid hydrocarbon maturation by an igneous intrusion. Org Geochem 25:149–164

    Article  Google Scholar 

  • Freeman KH, Hayes JM, Trendel JM, Albrecht P (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–256

    Article  Google Scholar 

  • Frielingsdorfa J, Islamb SA, Blockc M, Rahmanb MM, Rabbanid MG (2008) Tectonic subsidence modelling and Gondwana source rock hydrocarbon potential, Northwest Bangladesh Modelling of Kuchma, Singra and Hazipur wells. Mar Pet Geol 25:553–564

    Article  Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    Article  Google Scholar 

  • Genik G (1993a) Petroleum geology of cretaceous-Tertiary rift basins in Niger, Chad and Central African Republic. AAPG Bulletin 1405–1434

  • Genik G (1993b) Petroleum geology of cretaceous-Tertiary rift basins in Niger, Chad and Central African Republic. AAPG Bull 77(8):1405–1434

    Google Scholar 

  • Genik GJ (1992) Regional framework, structural and petroleum aspects of rift basins in Niger Chad and the Central African Republic. Tectonophysics 213(1–2):169–185

    Article  Google Scholar 

  • Goodarzi F, Brooks PW, Embry PF (1989) Regional maturity as determined by organic petrology and geochemistry of the Schei Point Group (Triassic) in Western Sverdrup Basin, Canadian Archipelago. Mar Pet Geol 6:290–302

    Article  Google Scholar 

  • Grantham PJ, Wakefield LL (1988) Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological times. Org Geochem 12(1):61–73. https://doi.org/10.1016/0146-6380(88)90115-5

    Article  Google Scholar 

  • Guiraud M (1993) Late Jurassic rifting- Early Cretaceous rifting and Late Cretaceous transpressional inversion in the Upper Benue basin (NE Nigeria). ElfAquitaine Bull 17(2):371–383

    Google Scholar 

  • Guiraud R, Binks RM, Fairhead JD, Wilson M (1992) Chronology and geodynamic setting of Cretaceous-Cenozoic rifting in West and Central Africa: In: P.A. Ziegler (Editor). Geodynamics of Rifting, Volume 11. Case History studies on Rifts: North and South America, Africa-Arabia. Tectonophysics, 713, 227–234

  • Guiraud R, Maurin JC (1991) Le rifting en Afrique au Crétacé inférieur: synthèse structurale, mise en évidence de deux étapes dans la genèse des bassins, relations avec les ouvertures océaniques péri-africaines. Bull Sot Giol Fr 162:811–823

    Article  Google Scholar 

  • Guiraud R, Bellion Y, Benkhelil J, Moreau C (1987) Post-Hercynian tectonics in Northern and Western Africa: Geological Journal, vol. 22, thematic issue, 433–466

  • Gürgey K, Simoneit BRT, Karamanderesi IH, Varol B (2007) Origin of petroliferous bitumen from the Büyük Menderes-Gediz geothermal graben system, Denizli-saraykoy, western Turkey. Appl Geochem 22:1393–1415

    Article  Google Scholar 

  • Hakimi, M.H., Ahmed, A.F., (2016) Petroleum source rock characterisation and hydrocarbon generation modeling of the Cretaceous sediments in the Jiza sub-basin, eastern Yemen, Marine and Petroleum Geologyhttps://doi.org/10.1016/j.marpetgeo.2016.04.008

  • Hakimi MH, Abdullah WH (2013) Organic geochemical characteristics and oil generating potential of the Upper Jurassic Safer shale sediments in the Marib-Shabowah Basin, western Yemen. Org Geochem 54:115–124

    Article  Google Scholar 

  • Hakimi MH, Shalaby MR, Abdullah WH (2012a) Molecular composition and organic petrographic characterization of Madbi source rocks from the Kharir Oilfield of the Masila Basin (Yemen): palaeoenvironmental and maturity interpretation. Arab J Geosci 5:817–831

    Article  Google Scholar 

  • Hakimi MH, Shalaby MR, Abdullah WH (2012b) Diagenetic characteristics and reservoir quality of the Lower Cretaceous Biyadh sandstones at Kharir oilfield in the western central Masila Basin, Yemen. J Asian Earth Sci 51:109–120

    Article  Google Scholar 

  • Hamma and Harouna (2019) Diagenesis and reservoir quality evolution of the Paleogene Sokor-1 sandstones in the Agadem Block Termit Basin, Eastern Niger. Intl J Adv Geosci 7(2):147–172

    Article  Google Scholar 

  • Hanson AD, Ritts BD, Zinniker D, Moldowan JM, Biffi U (2001) Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China. Am Asso Petrol Geol Bull 85:601–619

    Google Scholar 

  • Hanson AD, Zhang SC, Moldowan JM, Liang DG, Zhang BM (2000) Molecular organic geochemistry of the Tarim Basin, Northwest China. Am Asso Petrol Geol Bull 84:1109–1128

    Google Scholar 

  • Hao F, Zhou XH, Zhu YM, Yang YY (2011) Lacustrine source rock deposition in response to coevolution of environments and organisms controlled by tectonic subsidence and climate Bohai Bay Basin China. Org Geochem 42:323–339. https://doi.org/10.1016/j.orggeochem.2011.01.010

    Article  Google Scholar 

  • Hao F, Zhou XH, Zhu YM, Zou HY, Bao XH, Kong QY (2009a) Mechanisms of petroleum accumulation in the Bozhong sub-basin, Bohai Bay Basin, China. Part 1: Origin and occurrence of crude oils. Mar Pet Geol 26:1528–1542

    Article  Google Scholar 

  • Hao F, Zou HY, Gong ZS, Deng YH (2007) Petroleum migration and accumulation in the Bozhong sub-basin, Bohai Bay Basin, China: significance of preferential petroleum migration pathways (PPMP) for the formation of large oilfields in lacustrine fault basins. Mar Pet Geol 24:1–13. https://doi.org/10.1016/j.marpetgeo.2006.10.007

    Article  Google Scholar 

  • Harouna M, Pigott J, Philp R (2017) Burial history and thermal maturity evolution of the Termit basin, Niger. Journal of Petroleum Geology 277–297

  • Harouna M, Philp RP (2012) Potential petroleum source rocks in the Termit basin, Niger: Journ. Petrol Geol 35(2):165–186

    Article  Google Scholar 

  • Harris NB, Freeman KH, Pancost RD, White TS, Mitchell GD (2004) The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, West Africa. Am Asso Petrol Geol Bull 88:1163–1184

    Google Scholar 

  • ten Haven HL, De Leeuw JW, Schenck PA (1985) Organic geochemical studies of a Messinian evaporitic basin, northern Appenines (Italy). I: Hydrocarbon biological markers for a hypersaline environment. Geochim Cosmochim Acta 49:2181–2191

    Article  Google Scholar 

  • Hayes JM, Freeman KH, Popp BN, Hoham CH (1990) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biochemical processes. Org Geochem 16:1115–1128

    Article  Google Scholar 

  • Horstad I, Larter SR, Dypvik H, Aagaard P, BjØrnvik AM, Johanse PE, Eriksen S (1990) Degradation and maturity controls on oil field petroleum column heterogeneity in the Gullfaks field, Norwegian North Sea. Org Geochem 16:497–510

    Article  Google Scholar 

  • Huang HP, Zhang SC, Su J (2015) Geochemistry of tricyclic and tetracyclic terpanes in the Palaeozoic oils from the Tarim Basin, NW China. Energy and Fuel 29:7014–7025

    Article  Google Scholar 

  • Huang HP, Pearson JM (1999) Source rock paleoenvironments and controls on the distribution of dibenzothiophenes in lacustrine crude oils Bohai Bay Basin Eastern China. Org Geochem 30(11):1455–1470. https://doi.org/10.1016/S0146-6380(99)00126-6

    Article  Google Scholar 

  • Huang DF, Li JC, Zhang DJ, Huang XM, Zhou ZH (1991) Maturation sequence of Tertiary crude oils in the Qaidam Basin and its significance in petroleum resource assessment. J Southeast Asian Earth Sci 5:359–366

    Article  Google Scholar 

  • Huang WY, Meinschein WG (1979) Sterols as ecological indicators. Geochim Cosmochim Acta 4:739–745

    Article  Google Scholar 

  • Hughes WB, Holba AG, Dzou LIP (1995) The ratio of dipenzothiophene to phenanthrene and 261 ristine to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim Cosmochim Acta 59:3581–3598

    Article  Google Scholar 

  • Hughes WB, Holba AG, Miller DE, Richardson (1985) Geochemistry of greater Ekofisk crude oils. In: Thomas, B.M., Dore, A.G., Eggen, S.S., Home, P.C. and Larsen, R.M. (Eds), Petroleum Geochemistry in Exploration of the Norwegian Shelf. Graham and Trotman, London, 75–92

  • Hughes WB (1984) Use of thiophenic organosulfur compounds in characterizing crude oil derived from carbonate versus siliciclastic sources. In: Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (J.G. Palacas, ed.). AAPG Studies in Geology #18, 181–196

  • Hunt JM (1996) Petroleum geology and geochemistry, 2nd edn. Freeman and Company, New York, p 743

    Google Scholar 

  • Justwan H, Dahl B, Isaksen GH (2006) Geochemical characterization and genetic origin of oils and condensates in the South Viking graben, Norway: Marine and Petroleum Geology, v. 23, no. 2, 213–239. doi:https://doi.org/10.1016/j.marpetgeo.2005.07.003

  • Kabir SA, Keyu L, Moussa H, Jianliang L, Yuchen F, (2022) Characteristics of the Upper Cretaceous Yogou transitional formation and source rockpotential, Niger rift basin, J Afr Earth Sci, 104632. https://doi.org/10.1016/j.jafrearsci.2022.104632

  • Khaled R. Al arouri, (1996) Petroleum geochemistry, source rock evaluation and modeling of hydrocarbon generation in the southern Taroom through. PhD thesis, University of Adelaide

  • Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007) The geological succession of primary producers in the oceans. In: Falkowski P, Knoll AH (eds) The Evolution of Primary Producers in the Sea. Academic Press, Boston, pp 133–163

    Chapter  Google Scholar 

  • Langford FF, Blanc-Valleron MM (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull 74:799–804

    Google Scholar 

  • Lachenbruch A (1970) Crustal temperature and heat productivity: implications of the linear heat flow relation. J Geophys Res 75:3291–3300

    Article  Google Scholar 

  • Lai H, Li M, Liu J, Mao F, Xiao H, He W, Yang L (2018) Organic geochemical characteristics and depositional models of Upper Cretaceous marine source rocks in the Termit Basin Niger. Palaeogeog Palaeoclimatol Palaeoecol 495:292–308

    Article  Google Scholar 

  • Limbach GWM (1975) On the origin of petroleum. In: Proceedings of the 9th World Petroleum Congress, Tokyo. Applied Science publishers, London Vol. 2, 357–369

  • Littke R, Buker C, Luckge A, Sachsenhofer RF, Welte DH (1994) A new evaluation of palaeo-heat flows and eroded thicknesses for the Carboniferous Ruhr Basin, western Germany. Intl J Coal Geol 26:155–183

    Article  Google Scholar 

  • Liu B, H Bo, J., L, M., Mao, F., Liu, J.G., M, L., Wang Y (2011) Marine transgression of the eastern Niger basin in the late cretaceous: paleontological and geochemical evidences. Geoscience 995–1006

  • Liu B, Wan L, Mao F, Liu J, Lü M, Wang Y (2015) Hydrocarbon potential of upper cretaceous marine source rocks in the Termit basin Niger. J Petrol Geol 38(2):157–175

    Article  Google Scholar 

  • Louis P (1970) Contribution géophysique à la connaissance géologique du bassin du lac Tchad: Paris. ORSTOM 2(42):312

    Google Scholar 

  • Luo BJ, Wang CJ, Dong CM, Lin JH (1995) Organic geochemical characteristics of oils from Anzhou basin DPR Korea. Acta Pet Sin 26:40–47 ((in Chinese with English abstract))

    Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, And M, J R., (1982) Steroid hydrocarbons and the thermal history of sediments. Nature, London 295:223–226

    Article  Google Scholar 

  • Mackenzie AS, Patience RL, Maxwell JR, Vandenbroucke M, Durand B (1980) Molecular parameters of maturation in the Toarcian shales, Paris basin, France, I: Changes in the configuration of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim Cosmochim Acta 44:1709–1721

    Article  Google Scholar 

  • Maurin JC, Guiraud R (1993) Basement control in the development of the Early Cre-taceous West and Central African Rift System. Tectonophysics 228:81–95

    Article  Google Scholar 

  • Metwalli FI, Pigott JD (2005) Petroleum system criticals of the Matruh-Shushan Basin, Western Desert Egypt. Petrol Geosc 11(2):157–178

    Article  Google Scholar 

  • Mello MR, Telnaes N, P.C., G., Chicarelli, M.I., Brassell, S.C. And Maxwell, J.R., (1988) Organic geochemical characterization of depositional environment in Brazilian marginal basins. Org Geochem 13:31–46

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Moldowan JM, Fago FJ, Carison RMK, Young DC, Duvne G, Clardy J, Schoell M, Pillinger CT, Watt DS (1991) Reaaranged hopanes in sediments and petroleum. Geochim Cosmochim Acta 55:3333–3353

    Article  Google Scholar 

  • Arif N, Fazeelat T (2014) Petroleum geochemistry of Lower Indus Basin, Pakistan: I. Geochem Interp Origin Crude Oils J Petrol Sci Eng 122:173–179. https://doi.org/10.1016/j.petrol.2014.07.008

    Article  Google Scholar 

  • Nicholas BH, Katherine HF, Richard DP, Timothy SW, Gareth DM (2004) The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa. Am Assoc Pet Geol Bulletin 88:1163–1184

    Google Scholar 

  • Palacas JG, Anders DE, King JD (1984) South Florida basin-a prime example of carbonate source rocks in petroleum. In: Palaces, J.G. (Ed.), Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks, American Association of Petroleum Geologists, Studies in Geology, 18, 71–76

  • Peakman TM, Maxwell JR (1988) Early diagenetic pathways of steroid alkenes. Org Geochem 13:583–592

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Seconded, vol. 2. Cambridge University Press, Cambridge, pp. 612–613

  • Peters KE, Fowler MG (2002) Applications of petroleum geochemistry to exploration and reservoir management. Org Geochem 33:5–36

    Article  Google Scholar 

  • Peters KE (2000) Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. Org Geochem 31:497–507

    Article  Google Scholar 

  • Peters KE, Cassa MR, (1994) Applied source rock geochemistry. In: MAGOON, L. B. and DOW, W. G. (Eds), The petroleum system – from source to trap. AAPG Memoir, 60, 93–117

  • Peters KE, Moldowan JM (1993) The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments. Englewood Cliffs, New Jersey, Prentice Hall, pp. 227–228

  • Peters KE, Moldowan JM, Sundararaman P (1990) Effects of hydrous pyrolysis on biomarkers thermal maturity parameters: Monterey Phosphatic and Siliceous members. Org Geochem 15(3):249–265

    Article  Google Scholar 

  • Peters KE, Moldowan JM (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum [J]. Org Geochem 17:47–61

    Article  Google Scholar 

  • Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70:318–329

    Google Scholar 

  • Petters SW (1981) Stratigraphy of Chad and Iullemmeden basins (West Africa): Ecologae Geologicae Helvetiae, vol. 74, pp. 139–159

  • Petters SW (1978) Stratigraphic evolution of the Benue trough and its implications for the Upper Cretaceous paleogeography of West Africa. J Geol 86:311–322

    Article  Google Scholar 

  • Philp RP, Gilbert TD (1986) Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Org Geochem 10:73–84

    Article  Google Scholar 

  • Powell TG, Mckirdy DM (1973) Relationshio between ratio of pristine to phytane in crude oil composition and geological environment in Australia. Nature 243:37–39

    Google Scholar 

  • Preston JC, Edwards DS (2000) The petroleum geochemistry of oils and source rocks from the northern Bonaparte basin, offshore northern Australia: APPEA Journal, v. 40, p. 257–282

  • Radke M (1987) Organic geochemistry of aromatic hydrocarbons. In: Brooks, J. and Welte, D. H. (Eds.) Advances in Petroleum Geochemistry. Academic Press, London 2, 14–207

  • Radke M, Welte DH, Willsch H (1986) Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. Org Geochem 10:51–63

    Article  Google Scholar 

  • Radke M, Welte DH (1983) The Methylphenanthrene Index (MPI): A maturity parameter based on aromatic hydrocarbons. In: M. Bjorøy et al. (Eds), Advances in Organic Geochemistry 1981. Organic Geochemistry, 504–512

  • Radke M, Welte DH, Willsch H (1982) Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochim Cosmochim Acta 46:1–10

    Article  Google Scholar 

  • Ritts BD, Hanson AD, Zinniker D, Moldowan JM (1999) Lower-Middle Jurassic non marine source rocks and petroleum systems of the northern Qaidam basin, northwest China. Am Asso Petrol Geol Bull 83:1980–2005

    Google Scholar 

  • Schoell M (1984) Recent advances in petroleum isotope geochemistry. Org Geochem 6:645–663

    Article  Google Scholar 

  • Schoell M, Schouten S, Sinninghe Damsté JS, de Leeuw JW, Summons RE (1994) A molecular organic carbon isotope record of Miocene climate changes. Science 263:1122–1125

    Article  Google Scholar 

  • Schull TJ (1988) Rift basins of interior Sudan, petroleum exploration and discovery. AAPG Bull 72:1128–1142

    Google Scholar 

  • Shalaby MR, Hakimi MH, Abdullah WH (2011) Geochemical characteristics and hydrocarbon generation modeling of the Jurassic source rocks in the Shoushan Basin, north Western Desert. Egypt Mar Pet Geol 28:1611–1624

    Article  Google Scholar 

  • Shanmugam G (1985) Significance of coniferous rain forest and related organic matter in generating commercial quantities of oils, Gippsland Basin, Australia. Am Asso Petrol Geol Bull 69:1241–1254

    Google Scholar 

  • Seifert WK, Moldowan JM (1981) Paleoreconstruction by biological markers. Geochimica Et Cosmichimica Acta 45:783–794

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1978) Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim Cosmochim Acta 42:77–95

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1986) Use of biological markers in petroleum exploration. In: Johns RB (ed) Methods in geochemistry and geophysics, vol 24. pp 61–290

  • Sieskind O, Joly G, Albrecht P (1979) Simulation of the geochemical transformations of sterols: superacid effect of clay minerals. Geochim Cosmochim Acta 43:1675–1679

    Article  Google Scholar 

  • Sinninghe Damsté JS, Kenig F, Koopmans MP, Koster J, Schouten S, Hayes JM, De Leeum JW (1995) Evidence for gammacerane as an indicator of water column stratification. Geochim Cosmochim Acta 59:1895–1900

    Article  Google Scholar 

  • Sofer Z (1984) Stable carbon isotope composition of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull 68:31–49

    Google Scholar 

  • Sun X, Zhang T, Sun Y, Milliken KL, Sun D (2016) Geochemical evidence of organic matter source input and depositional environments in the lower and upper Eagle Ford Formation, south Texas. Org Geochem 98:66–81

    Article  Google Scholar 

  • Summons RE, Hope JM, Swart R, Walter MR (2008) Origin of Nama Basin bitumen seeps: petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana. Org Geochem 39:589–607

    Article  Google Scholar 

  • Dong T, He S, Liu G, Hou Y, Harris NB (2015b) Geochemistry and correlation of crude oils from reservoirs and source rocks in southern Biyang Sag, Nanxiang Basin China. Organ Geochem 80(2015):18–34. https://doi.org/10.1016/j.orggeochem.2014.12.006

    Article  Google Scholar 

  • Tissot BP, Durand B, Espitalié J, Combaz A (1974) Influence of the nature and diagenesis of organic matter in formation of petroleum. Am Asso Petrol Geol Bull 58:499–506

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer Verlag, Berlin, p 699

    Book  Google Scholar 

  • Vincent PW, Mortimore IR, McKirdy DM (1985) Hydrocarbon generation, migration and entrapment in the Jackson-Naccowlah area, ATP 256P, southwesthern Queensland. Austr Explor Assoc J 25(1):62–84

    Google Scholar 

  • Volkman JK, Alexandaner R, Kagi RI, Noble RA, Woodhouse CW (1983a) A geochemical reconstruction of oil generation in the Barrow sub-basin of western Australia. Geochim Cosmochim Acta 47:2091–2105

    Article  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  Google Scholar 

  • Volkman JK, Teresa O'leary RE, Summons MRB (1992) Biomarker composition of some asphaltic coastal bitumens from Tasmania, Australia. Org. Geochem. (18) 5, 669-682

  • Volkman JK, Farrington JW, Gasgosian RB, Wakeham SG (1983b) Lipid composition of coastal marine sediments from the Peru upwelling region. Advances in Organic Geochemistry 1981 (Bjorøy, M. et al., eds.), 228–240, Wiley, Chichester

  • Volk H, George CS, Middleton H, Schofield S (2005) Geochemical comparison of fluid inclusion and present day oil accumulations in the Papuan Foreland—Evidence for previously unrecognised petroleum source rocks: Organic Geochemistry, v. 36, 29–51. doi:https://doi.org/10.1016/j.orggeochem.2004.07.018

  • Wang X, Wan L, Jiang Z, Liu R, Xiaoban W, Tang W, Xu W (2017a) Controlling factors and accumulation model of hydrocarbon reservoirs in the upper cretaceous Yogou Formation, koulele area, Termit basin Niger. J Petrol Sci Eng 28(6):1126–1134

    Google Scholar 

  • Wang X, Wan L, Jiang Z, Liu R, Xiaobin W, Tang W, Gao Y, Liu S, Xu W (2017b) Controlling factors and accumulation model of hydrocarbon reservoirs in the upper cretaceous Yogou Formation, koulele area, Termit basin Niger. J Earth Sci 28(6):1126–1134. 10.1007/s12583-016-0936-5

  • Wan L, Liu J, Mao F, Lv M, Liu B (2014) The petroleum geochemistry of the Termit Basin, Eastern Niger: Mar. Pet Geol 51:167–183

    Article  Google Scholar 

  • Wang TG, He F, Wang C, Zhang W, Wang J (2008) Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield, Tarim Basin NW China. Organ Geochem 39(11):1637–1646. https://doi.org/10.1016/j.orggeochem.2008.05.006

    Article  Google Scholar 

  • Wang CJ, Fu JM, Sheng GY, Xiao QH, Li JY, Zhang YL, Piao MZ (2000) Geochemical characteristics and applications of 18α(H)-neohopanes and 17α(H)-diahopanes. Chin Sci Bull 45:1366–1372 ((in Chinese with English abstract))

    Google Scholar 

  • Wang TG, Zhong NN, Hou DJ et al (1995) Formation Mechanism and Distribution of Low Mature Oil-Gas. Petroleum Industry Press, Beijing, China

    Google Scholar 

  • Wang TG, Simoneit BRT (1995) Tricyclic terpanes in Precambrian bituminous sandstone from the eastern Yanshan region North China. Chem Geol 120(1–2):155–170. https://doi.org/10.1016/0009-2541(94)00113-M

    Article  Google Scholar 

  • Waples DW, Machihara T (1990) Application of sterane and triterpane biomarkers in petroleum exploration: Bulletin of Canadian Petroleum Geology, v. 38, 357–380

  • Yang W, Liu G, Feng Y (2016) Geochemical significance of 17a(H)-diahopane and its application in oil-source correlation of Yanchang formation in Longdong area Ordos basin China. Marine Petrol Geol 71:238–249. https://doi.org/10.1016/j.marpetgeo.2015.10.016

    Article  Google Scholar 

  • Williams J, Bjorøy M, Dolcater D, Winters J (1986) Biodegradation in South Texas Eocene oils–effects on aromatics and biomarkers: Organic Geochemistry, v. 10, p. 451–461, doi: https://doi.org/10.1016/0146-6380(86)90045-8

  • Xiao H, Wang TG, Li M, Lai H, Liu J, Mao F, Tang Y (2019) Geochemical characteristics of cretaceous Yogou Formation source rocks and oil-source correlation within a sequence stratigraphic framework in the Termit basin Niger. J Petrol Sci Eng 172:360. 10.1016/j

  • Xiao ZY, Huang GH, Lu YH, Wu Y, Zhang QC (2004) Rearranged hopanes in oils from the Quele 1 well, Tarim Basin, and the significance for oil correlation. Pet Explor Dev 31(2):35–37 (in Chinese with English abstract)

    Google Scholar 

  • Xiaowen G, Sheng H, Keyu L, Zhongsheng S, Sani B (2011) Modelling the petroleum generation and migration of the third member of the Shahejie Formation (Es3) in the Banqiao Depression of Bohai Bay Basin Eastern China. Jsian Earth Sci 40:287–302

  • Yalcin MN, Littke R, Sachsenhofer RF (1997) Thermal History of Sedimentary Basins. In: Welte DH, Horsfield B, Baker D (eds) Petroleum and basin evaluation. Springer, Berlin, pp 73–167

    Google Scholar 

  • Zanguina M, Bruneton A, Gonnard R (1998) An introduction to the petroleum potential of Niger: Journ. Petrol Geol 21(1):83–103

    Article  Google Scholar 

  • Zhang SC, Zhang BM, Bian LZ, Jin ZJ, Wang DR, Chen JF (2007) Oil shale of Xiamaling formation piled by red algae 800 million years ago. Sci China Ser Dearth Sci 37:636–643 (in Chinese with English abstract)

    Google Scholar 

  • Zhang SC, Huang HP (2005) Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 1 Oil family classification. Organ Geochem 36:1204–1214

    Article  Google Scholar 

  • Zhao MJ, Zhang SC (2001) The special sedimentary facies indicated by 17α(H)-diahopane in Tarim basin. Pet Explor Dev 28:36–38 (in Chinese with English abstract)

    Google Scholar 

  • Zeng FG, Cheng KM (1998) Characteristics of aromatic hydrocarbon biomarkers from lower palaeozoic marine carbonate rocks in North China. Geology-Geochemistry 26:33–39

    Google Scholar 

  • Zhou L, Su J, Dong X et al (2017) Controlling factors of hydrocarbon accumulation in Termit rift superimposed basin Niger. Petrol Explor Dev 44:358–367

    Article  Google Scholar 

  • Zhu YM, Zhong RC, Cai XY, Luo Y (2007) Composition and origin approach of rearranged hopanes in Jurassic oils of central Sichun basin. Geochemica 36:253–260 (in Chinese with English abstract)

    Google Scholar 

  • Zhu YM, Weng HX, Su AG, Liang DG, Peng DH (2005) Geochemical characteristics of Tertiary saline lacustrine oils in the western Qaidam basin, northwest China. Appl Geochem 20:1875–1889

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director General of the “Direction Générale des Hydrocarbures” and CNPC Niger Petroleum S.A., who granted permission to provide crude oil and source rock samples. They express their gratitude to the director of the “Direction de la Recherche Scientifique’’ and experts in the Niger’s ‘‘Ministère de l’Enseignement Supérieur et de la Recherche’’ who approved this research project. We thank the “Key Laboratory of Tectonics and Petroleum Resources, China university of Geosciences (Wuhan), Ministry of Education, Wuhan, 430074, China’’ for the technical analyses. We appreciate the financial support provided by the UNESCO/People’s Republic of China (The Great Wall) Co-Sponsored Fellowships. Finally, the authors thank an anonymous reviewer whose constructive comments greatly improved the manuscript.

Funding

This research was funded by the UNESCO/People’s Republic of China (The Great Wall) Co-Sponsored Fellowships programme 2017–2018, grant number ER/MSP/PPF/BQ/17.057.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Data curation, Writing-Original draft preparation, Investigation HAMMA Ada Moussa; Visualization, Writing-review & editing Abdou Dodo BOHARI and Kabir Shola Ahmed: Supervision, Validation Moussa HAROUNA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hamma Ada Moussa.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The sponsors had no influence on the research topic, data collection, analyses and the conclusions of this study.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, H.A., Bohari, A.D., Ahmed, K.S. et al. Thermal maturity evolution and hydrocarbon generation in the Dibeilla oil field, Termit Basin, Eastern Niger: an organic geochemical and basin modeling approach. Arab J Geosci 16, 338 (2023). https://doi.org/10.1007/s12517-023-11383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11383-4

Keywords

Navigation