Skip to main content

Advertisement

Log in

Early Cretaceous highly positive ε Nd felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

An early Cretaceous (135 ± 2 Ma) felsic volcanic suite of dacite and rhyolite from Huolinhe, NE China is characterized by large ion lithophile element and light REE enrichment and high field strength element (HFSE, e.g., Nb and Ta) and Ti–P depletion, and bulk silicate earth-like Sr [87Sr/86Sr(i) = 0.70409–0.70481], quite radiogenic Nd [ε Nd(t) = +3.98 to +5.88], Pb [e.g., 206Pb/204Pb(i) = 18.46–18.55] and Hf [ε Hf(t) ~+9.2] isotope compositions. Compared with contemporaneous mafic rocks in the region, these felsic rocks have even higher Nd and Hf isotopic ratios, precluding an origin through differentiation of coeval mantle-derived magmas. Isotope calculation results suggest that these magmas were derived from a preexistent mixture composed of mainly juvenile crust (70–80%), and a subordinate recycled crustal component (20–30%) having highly radiogenic Sr and Pb and unradiogenic Nd and Hf. About 25–30% melting of such a mixed source produced the primary dacitic magma. The rhyolites, which have relatively low MgO, FeO*, Al2O3, CaO, TiO2, P2O5, Na2O, Ba, Sr, REE, HFSE and Y, were differentiates of the dacites after removal of a fractional assemblage of hornblende + plagioclase + K-feldspar + apatite + zircon. Considering the prolonged events (from 262 to 130 Ma) that produced such highly positive ε Nd felsic igneous rocks in the region, we prefer a pre-Mesozoic crustal growth model related to arc accretion associated with the Paleo-Asian Ocean subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arth JG (1976) Behavior of trace elements during magmatic processes—a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region (BGMRNM) (1991) Regional geology of Nei Mongol Autonomous Region. Geological Publishing House, Beijing, p 725 (in Chinese)

    Google Scholar 

  • Chen JF, Jahn BM (1998) Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284:101–133. doi:10.1016/S0040-1951(97)00186-8

    Article  Google Scholar 

  • Chen B, Jahn BM, Wilde S, Xu B (2000) Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328:157–182. doi:10.1016/S0040-1951(00)00182-7

    Article  Google Scholar 

  • Chen FK, Satir M, Ji J, Zhang D (2002) Nd-Sr-Pb isotopes of Tengchong Cenozoic volcanic rocks from western Yunnan, China: evidence for an enriched mantle source. J Asian Earth Sci 21:39–45. doi:10.1016/S1367-9120(02)00007-X

    Article  Google Scholar 

  • Ellis DJ, Thompson AB (1986) Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O system under water-excess and water-deficient conditions to 10kb: some implications for the origin of peraluminous melts from mafic rocks. J Petrol 27:91–121

    Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284. doi:10.1016/0009-2541(94)90131-7

    Article  Google Scholar 

  • Fan WM, Guo F, Wang YJ, Lin G (2003) Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J Volcanol Geotherm Res 121:115–135. doi:10.1016/S0377-0273(02)00415-8

    Article  Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K (1984) Partition coefficients of Zr, Hf and REE between phenocrysts and groundmass. Proceedings of the fourteenth lunar and planetary science conference, Part 2. J Geophys Res 89(Suppl):B662–B672. doi:10.1029/JB089iS02p0B662

    Article  Google Scholar 

  • Gao XF, Guo F, Fan WM, Li CW, Li XY (2005) Origin of late Mesozoic intermediate-felsic volcanic rocks from the northern Da Hinggan Mountain, NE China. Acta Petrol Sin 21:737–748 (in Chinese with English abstract)

    Google Scholar 

  • Gardien V, Thompson AB, Gruic D, Ulmer P (1995) Experimental melting of biotite-plagioclase-quartz-muscovite assemblages and implications for crustal melting. J Geophys Res 100:15581–15591. doi:10.1029/95JB00916

    Article  Google Scholar 

  • Ge WC, Lin Q, Sun DY, Wu FY, Won CK, Lee MW et al (1999) Geochemical characteristics of Mesozoic basaltic volcanic rocks in the Da Hinggan Mts: evidence for mantle-crust interaction. Acta Petrol Sin 15:396–407 (in Chinese with English abstract)

    Google Scholar 

  • Ge WC, Lin Q, Sun DY, Wu FY (2000) Geochemical study on of the two types of Mesozoic rhyolite lavas in the Da Hinggan Mts. Earth Sci J China Univ Geosci 25:172–178 (in Chinese with English abstract)

    Google Scholar 

  • Guo F, Fan WM, Wang YJ, Lin G (2001) Petrogenesis of the late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts, China. Acta Petrol Sin 17:161–168 (in Chinese with English abstract)

    Google Scholar 

  • Guo F, Nakamura E, Fan WM, Kobayashi K, Li CW (2007) Generation of Palaeocene adakitic andesites by magma mixing; Yanji area, NE China. J Petrol 48:661–692. doi:10.1093/petrology/egl077

    Article  Google Scholar 

  • Guo F, Fan WM, Li CW, Miao LC, Zhao L (submitted) Early Paleozoic subduction of the Paleo-Asian Ocean: evidence from the geochronology and geochemistry of Dashizhai basalts from the Nei Mongolia region, NE China. Sci China Earth Sci Rev

  • Han BH, Wang SG, Jahn BM, Hong DW, Kagami H, Sun YL (1997) Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem Geol 138:135–159. doi:10.1016/S0009-2541(97)00003-X

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757. doi:10.1038/309753a0

    Article  Google Scholar 

  • Hawkesworth CJ, Turner S, Gallagher K, Hunter A, Bradshaw T, Rogers N (1995) Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res 100:10271–10286. doi:10.1029/94JB02508

    Article  Google Scholar 

  • Hong DW, Wang T, Wang SG, Xie XL (2004) Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. J Asian Earth Sci 23:799–813. doi:10.1016/S1367-9120(03)00134-2

    Article  Google Scholar 

  • Jahn BM, Wu FY, Capdevila R, Martineau F, Wang YX, Zhao ZH (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountain in NE China. Lithos 59:171–198. doi:10.1016/S0024-4937(01)00066-4

    Article  Google Scholar 

  • Kuzmin ML, Abramovich GYA, Dril SL, Kravchinsky VYA (1996) The Mongolian-Okhotsk suture as the evidence of late Paleozoic-Mesozoic collisional processes in Central Asia. Abstract of 30th IGC, Beijing, vol 1, p 261

  • Le Bas M, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Li ST, Yang SG (1987) The late Mesozoic rifting in the northeastern China and the fault-rifting basins in East Asia. Sci China B 21:185–195

    Google Scholar 

  • Lin Q, Ge WC, Sun DY, Wu FY, Won CK, Min KD, Jin MS, Lee MW, Kwon C, Yun S (1998) Tectonic implications of Mesozoic volcanic rocks in Northeastern China. Sci Geol 33:129–139 (in Chinese with English abstract)

    Google Scholar 

  • Lin Q, Ge WC, Cao L, Sun DY, Lin JG (2003) Geochemistry of Mesozoic bimodal volcanic rocks from the Da Hinggan Mountain. Geochimica 32:208–222 (in Chinese with English abstract)

    Google Scholar 

  • Liu DY, Jian P, Zhang Q, Zhang FQ, Shi YR, Shi GH et al (2003) SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: evidence for the Early Paleozoic subduction. Acta Geol Sin 77:317–327 (in Chinese with English abstract)

    Google Scholar 

  • Liu W, Siebel W, Li XJ, Pan XF (2005) Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: constraints on basaltic underplating. Chem Geol 219:5–35. doi:10.1016/j.chemgeo.2005.01.013

    Article  Google Scholar 

  • Liu W, Pan XF, Xie LW, Li H (2007) Sources of material for the generation of the Linxi granitoids, the southern segment of the Great Xing’an Range: when and how continental crust grew? Acta Petrol Sin 23:441–460 (in Chinese with English abstract)

    Google Scholar 

  • Meng QR (2003) What drove late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 369:155–174. doi:10.1016/S0040-1951(03)00195-1

    Article  Google Scholar 

  • Miao LC, Fan WM, Zhang FQ, Liu DY, Jian P, Tao H et al (2004) Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing’an Range, and its geological implications. Chin Sci Bull 49:201–209. doi:10.1360/03wd0316

    Article  Google Scholar 

  • Miao LC, Fan WM, Liu DY, Zhang FQ, Jian P, Guo F et al (2008) Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China. J Asian Earth Sci 32:348–370. doi:10.1016/j.jseaes.2007.11.005

    Article  Google Scholar 

  • Mossakovsky AA, Ruzhentsev SV, Samygin SG, Kheraskova TN (1993) Central Asian fold belt: geodynamic evolution and history of formation. Geotectonics 6:3–33

    Google Scholar 

  • Nakamura E, Kushiro I (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochim Cosmochim Acta 62:3151–3160. doi:10.1016/S0016-7037(98)00223-3

    Article  Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322. doi:10.1016/0016-7037(85)90231-5

    Article  Google Scholar 

  • Patchett PJ (1983) Hafnium isotope results from mid-ocean ridges and Kerguelen. Lithos 16:47–51. doi:10.1016/0024-4937(83)90033-6

    Article  Google Scholar 

  • Patiño Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Google Scholar 

  • Qi L, Hu J, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513. doi:10.1016/S0039-9140(99)00318-5

    Article  Google Scholar 

  • Robinson PT, Zhou M, Hu X (1999) Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China. J Asian Earth Sci 17:423–442. doi:10.1016/S1367-9120(99)00016-4

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138. doi:10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Sengör AMC, Natal’in BA (1996) Paleotectonics in Asia: fragments of a synthesis. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, Cambridge, pp 486–640

    Google Scholar 

  • Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307. doi:10.1038/364299a0

    Article  Google Scholar 

  • Shao JA (1991) The crustal evolution of the middle sector of the North margin of Sino-Korea plate. Beijing University Press, Beijing, p 136 (in Chinese)

    Google Scholar 

  • Shi GH, Liu DY, Zhang FQ, Jian P, Miao LC, Shi YR et al (2003) SHRIMP U-Pb zircon geochronology of Xilin Gol Complex, Inner Mongolia, China, and its implications. Chin Sci Bull 48:2742–2748. doi:10.1360/03wd0191

    Google Scholar 

  • Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC et al (2004) SHRIMP geochronology of dioritic-granitic intrusions in Sunidzuoqi area, inner Mongolia. Acta Geol Sin 79:789–799 (in Chinese with English abstract)

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661. doi:10.1007/s00410-004-0632-9

    Article  Google Scholar 

  • Steiger RH, Jager E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362. doi:10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunder AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society, London Special Publications, London, pp 313–345

    Google Scholar 

  • van der Voo R, Spakman W, Bijwaard H (1999) Mesozoic subducted slabs under Siberia. Nature 397:246–249. doi:10.1038/16686

    Article  Google Scholar 

  • Vervoort JD, Patchett JD, Albarede F, Blichert-Toft J, Rudnick R, Downes H (2000) Hf-Nd isotopic evolution of the lower crust. Earth Planet Sci Lett 181:115–129. doi:10.1016/S0012-821X(00)00170-9

    Article  Google Scholar 

  • Wang T, Zheng YD, Li TB, Gao YJ (2004) Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. J Asian Earth Sci 23:715–729. doi:10.1016/S1367-9120(03)00133-0

    Article  Google Scholar 

  • Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY et al (2006) Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth Planet Sci Lett 251:179–198. doi:10.1016/j.epsl.2006.09.007

    Article  Google Scholar 

  • Watson BE, Harrison MT (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. doi:10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao WJ, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic belt. J Geol Soc London 164:31–47. doi:10.1144/0016-76492006-022

    Article  Google Scholar 

  • Wolf MB, Wyllie JP (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383. doi:10.1007/BF00320972

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde S, Sun DY (2000) Phanerozoic crustal growth: U-Pb and Sm-Nd isotopic evidence from the granite in northeastern China. Tectonophysics 328:89–113. doi:10.1016/S0040-1951(00)00179-7

    Article  Google Scholar 

  • Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173. doi:10.1016/S0009-2541(02)00018-9

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde S, Lo CH, Yui TF, Lin Q et al (2003a) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66:241–273. doi:10.1016/S0024-4937(02)00222-0

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde S, Lo CH, Yui TF, Lin Q et al (2003b) Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67:191–204. doi:10.1016/S0024-4937(03)00015-X

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126. doi:10.1016/j.chemgeo.2006.05.003

    Article  Google Scholar 

  • Xiao W, Windley BF, Hao J, Zhai M (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics 22:1069. doi:10.1029/2002TC001484

    Article  Google Scholar 

  • Zhang LG, Liu JX, Wang KF (1995) Block geology of eastern Asia lithosphere: Isotope geochemistry and dynamics of upper mantle, basement and granite. Science Press, Beijing, p 252 (in Chinese)

    Google Scholar 

  • Zhao XX, Coe RS, Zhou YS, Wu HR, Wang J (1990) New palaeomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan. Tectonophysics 181:43–81. doi:10.1016/0040-1951(90)90013-X

    Article  Google Scholar 

  • Zhu YF, Sun SH, Gu LB, Ogasawara Y, Jiang N, Honma H (2001) Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis. Geol Mag 138:101–115. doi:10.1017/S0016756801005210

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Profs. X.H. Zhou, F.Y. Wu, X.L. Xiong and HR Smithies for providing valuable suggestions on an earlier version of the manuscript. Constructive reviews by Simon Wilde and an anonymous reviewer greatly improve the manuscript. Thanks are also due to Mr L. Qi, Dr Liang and Dr J.H. Yang for their help in trace element ICP-MS, Sr–Nd and zircon Hf isotope analyses, respectively. Prof. D.Y. Liu is thanked for help with the SHRIMP zircon U–Pb dating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Fan, W., Li, C. et al. Early Cretaceous highly positive ε Nd felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth. Int J Earth Sci (Geol Rundsch) 98, 1395–1411 (2009). https://doi.org/10.1007/s00531-008-0362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0362-8

Keywords

Navigation