Skip to main content
Log in

Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

As an active back-arc basin, the Okinawa Trough is located in the southeastern region of the East China Sea shelf and is strongly influenced by the subduction of the Philippine Sea Plate. Major element, trace element and Sr-Nd- Pb isotopic composition data are presented for volcanic rocks from the Iheya Ridge (IR), the middle Okinawa Trough. The IR rocks record large variations in major elements and range from basalts to rhyolites. Similar trace element distribution characteristics together with small variations in 87Sr/86Sr (0.703 862–0.704 884), 144Nd/143Nd (0.512 763–0.512 880) and Pb isotopic ratios, demonstrate that the IR rocks are derived from a similar magma source. The fractional crystallization of olivine, clinopyroxene, plagioclase, and amphibole, as well as accessory minerals, can reasonably explain the compositional variations of these IR rocks. The simulations suggest that approximately 60% and 75% fractionation of an evolved basaltic magma can produce trace element compositions similar to those of the intermediate rocks and acid rocks, respectively. The analysis of their Sr-Nd-Pb isotopic content ratios suggest that the source of the rocks from the IR is close to the depleted mantle (DM) but extends to the enriched mantle (EMII), indicating that the mantle source of these rocks is a mixture between the DM and EMII end members. The simulations show that the source of the IR volcanic rocks can be best interpreted as the result of the mixing of approximately 0.8%–2.0% subduction sediment components and 98.0%–99.2% mantlederived melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre C J, Hamelin B, Provost A, et al. 1987. Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth and Planetary Science Letters, 81(4): 319–337

    Article  Google Scholar 

  • Arth J G. 1976. Behaviour of trace elements during magmatic processes— A summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey, 4(1): 41–47

    Google Scholar 

  • Bacon C R, Druitt T H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224–256

    Article  Google Scholar 

  • Brouxel M, Lapierre H, Michard A, et al. 1987. The deep layers of a Paleozoic arc: geochemistry of the Copley-Balaklala series, northern California. Earth and Planetary Science Letters, 85(4): 386–400

    Article  Google Scholar 

  • Cai Yachun, Fan Hongrui, Santosh M, et al. 2014. Silicate melt inclusions in clinopyroxene phenocrysts from mafic dikes in the eastern North china Craton: constraints on melt evolution. Journal of Asian Earth Sciences, 97: 150–168

    Article  Google Scholar 

  • Christiansen R L. 1984. Yellowstone magmatic evolution: its bearing on understanding large-volume explosive volcanism. In: Explosive Volcanism: Inception, Evolution, and Hazards. Washington, DC: National Academy Press, 84–95

    Google Scholar 

  • Chun Minghao, Yu Zenghui, Zhai Shikui. 2015. The geochemistry and geological significances of basalts from Carlsberg Ridge in Indian Ocean. Haiyang Xuebao (in Chinese), 37(8): 47–62

    Google Scholar 

  • Class C, Miller D M, Goldstein S L, et al. 2000. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian arc. Geochemistry, Geophysics, Geosystems, 1(6): 1004

    Article  Google Scholar 

  • Davies G R, MacDonald R. 1987. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28(6): 1009–1031

    Article  Google Scholar 

  • Doe B R, Leeman W P, Christiansen R L, et al. 1982. Lead and strontium isotopes and related trace elements as genetic tracers in the Upper Cenozoic rhyolite-basalt association of the Yellowstone Plateau Volcanic Field. Journal of Geophysical Research: Atmospheres, 87(B6): 4785–4806

    Article  Google Scholar 

  • Duan Xianzhe, Sun He, Yang Wei, et al. 2014. Melt-peridotite interaction in the shallow lithospheric mantle of the North China Craton: evidence from melt inclusions in the quartz-bearing orthopyroxene- rich websterite from Hannuoba. International Geology Review, 56(4): 448–472

    Article  Google Scholar 

  • Dunn T, Sen C. 1994. Mineral/matrix partition-coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochimica et Cosmochimica Acta, 58(2): 717–733, doi: 10.1016/0016–7037(94)90501–0

    Article  Google Scholar 

  • Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Atmospheres, 102(B7): 14991–15019

    Article  Google Scholar 

  • Ewart A, Griffin W L. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chemical Geology, 117(1–4), 251–284, doi: 10.1016/0009–2541(94)90131–7

    Article  Google Scholar 

  • Fujimaki H. 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contributions to Mineralogy and Petrology, 94(1): 42–45

    Article  Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K I. 1984. Partition coefficients of Hf, Zr, and ree between phenocrysts and groundmasses. Journal of Geophysical Research: Atmospheres, 89(S02): B662–B672

    Article  Google Scholar 

  • Gao Jinyao, Zhang Tao, Fang Yinxia, et al. 2009. Faulting, magmatism and crustal oceanization of the Okinawa Trough. Acta Oceanologica Sinica, 28(3): 40–49

    Google Scholar 

  • Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: the basalt-rhyolite association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965–982

    Article  Google Scholar 

  • Gill J B. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer

    Book  Google Scholar 

  • Grove T L, Donnelly-Nolan J M. 1986. The evolution of young silicic lavas at Medicine Lake volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contributions to Mineralogy and Petrology, 92(3): 281–302

    Article  Google Scholar 

  • Guo Kun. 2016. Volcanic rock magma source composition and subduction composition effects in Okinawa Trough (in Chinese) [dissertation]. Qingdao: Ocean University of China

    Google Scholar 

  • Guo Pengyuan, Niu Yaoling, Sun Pu, et al. 2016. The origin of Cenozoic basalts from central Inner Mongolia, East China: the consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos, 240–243: 104–118

    Article  Google Scholar 

  • Guo Pengyuan, Niu Yaoling, Ye Lei, et al. 2014. Lithosphere thinning beneath west North China craton: evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts. Lithos, 202–203: 37–54

    Article  Google Scholar 

  • Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971): 753–757

    Article  Google Scholar 

  • Hauff F, Hoernle K, Schmidt A. 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochemistry, Geophysics, Geosystems, 4(8): 8913, doi: 10.1029/2002GC000421

    Article  Google Scholar 

  • Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology, 265(3–4): 512–526

    Article  Google Scholar 

  • Hickey-Vargas R. 1991. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth and Planetary Science Letters, 107(2): 290–304

    Article  Google Scholar 

  • Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes. Journal of Geophysical Research: Atmospheres, 103(B9): 20963–20979

    Article  Google Scholar 

  • Hickey-Vargas R, Hergt J M, Spadea P. 1995. The Indian Ocean-type isotopic signature in western Pacific marginal basins: origin and significance. In: Taylor B, Natland J, eds. Active Margins and Marginal Basins of the Western Pacific. Active Margins and Marginal Basins of the Western Pacific, 175–197

    Chapter  Google Scholar 

  • Hoang N, Uto K. 2006. Upper mantle isotopic components beneath the Ryukyu arc system: evidence for ‘back-arc’ entrapment of Pacific MORB mantle. Earth and Planetary Science Letters, 249(3–4): 229–240

    Article  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613): 219–229

    Article  Google Scholar 

  • Hofmann A W, Jochum K P, Seufert M, et al. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1–2): 33–45

    Article  Google Scholar 

  • Honma H, Kusakabe M, Kagami H, et al. 1991. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochemical Journal, 25(2): 121–136

    Article  Google Scholar 

  • Hu Yan, Niu Yaoling, Li Jiyong, et al. 2016. Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205–222

    Article  Google Scholar 

  • Huang Peng, Li Anchun, Jiang Hengyi. 2006. Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough. Acta Petrologica Sinica (in Chinese), 22(6): 1703–1712

    Google Scholar 

  • Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548

    Article  Google Scholar 

  • Ishikawa M, Sato H, Furukawa M, et al. 1991. Report on DELP 1988 cruises in the Okinawa Trough: part 6. Petrology of volcanic rocks. Bulletin of the Earthquake Research Institute, University of Tokyo, 66(1): 151–177

    Google Scholar 

  • Ishizuka H, Kawanobe Y, Sakai H. 1990. Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochemical Journal, 24(2): 75–92

    Article  Google Scholar 

  • Ishizuka O, Taylor R N, Yuasa M, et al. 2007. Processes controlling along-arc isotopic variation of the southern Izu-Bonin arc. Geochemistry, Geophysics, Geosystems, 8(6): Q06008

    Article  Google Scholar 

  • Johnson M C, Plank T. 2000. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12): 1007

    Article  Google Scholar 

  • Kimura M. 1985. Back-arc rifting in the Okinawa Trough. Marine and Petroleum Geology, 2(3): 222–240

    Article  Google Scholar 

  • Kimura M, Kaneoka I, Kato Y, et al. 1986. Report on DELP 1984 cruises in the middle Okinawa Trough: Part 5. Topography and geology of the central grabens and their vicinity. Bulletin of the Earthquake Research Institute, University of Tokyo, 61(2): 269–310

    Google Scholar 

  • Kimura M, Kato Y, Tanaka T, et al. 1987. Submersible SHINKAI 2000 study on the central rift in the middle Okinawa Trough. In: 3rd Symposium on Deep-Sea Research Using the Submersible “SHINKAI 2000” System. Yokosuka: Japan Marine Science and Technology Center, 165–196

    Google Scholar 

  • Kimura M, Oomori T, Izawa E, et al. 1991. Research results of the 284, 286, 287 and 366 dives in the Iheya Depression and the 364 dive in the Izena Holl by “SHINKAI 2000”. In: 7th Symposium on Deep-sea Research Using the Submersible “Shinkai 2000” System. Yokosuka: Japan Marine Science and Technology Center, 147–161

    Google Scholar 

  • Lai Zhiqing, Zhao Guangtao, Han Zongzhu, et al. 2016. Back-arc magma processes in the Okinawa Trough: new insights from textural and compositional variations of plagioclase in basalts. Geological Journal, 51(S1): 346–356

    Article  Google Scholar 

  • Lee C S, Shor Jr G G, Bibee L D, et al. 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology, 35(1–3): 219–241

    Article  Google Scholar 

  • Lemarchand F, Villemant B, Calas G. 1987. Trace element distribution coefficients in alkaline series. Geochimica et Cosmochimica Acta, 51(5): 1071–1081, doi: 10.1016/0016–7037(87)90201–8

    Article  Google Scholar 

  • Letouzey J, Kimura M. 1985. Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent. Marine and Petroleum Geology, 2(2): 111–130

    Article  Google Scholar 

  • Letouzey J, Kimura M. 1986. The Okinawa Trough: genesis of a backarc basin developing along a continental margin. Tectonophysics, 125(1–3): 209–230

    Article  Google Scholar 

  • Li Naisheng. 2001. On tectonic problems of the Okinawa Trough. Chinese Journal of Oceanology and Limnology, 19(3): 255–264

    Article  Google Scholar 

  • Li Weiran, Yang Zuosheng, Wang Yongji, et al. 1997. The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance. Acta Petrologica Sinica (in Chinese), 13(4): 538–550

    Google Scholar 

  • Liu Yongsheng, Gao Shan, Gao Changgui, et al. 2010. Garnet-rich granulite xenoliths from the Hannuoba basalts, North China: petrogenesis and implications for the Mesozoic crust-mantle interaction. Journal of Earth Science, 21(5): 669–691

    Article  Google Scholar 

  • Luo Biji, Zhang Hongfei, Lü Xinbiao. 2012. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: petrogenesis and tectonic implications. Contributions to Mineralogy and Petrology, 164(4): 551–569

    Article  Google Scholar 

  • MacDonald R, Davies G R, Bliss C M, et al. 1987. Geochemistry of high-silica peralkaline rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28(6): 979–1008

    Article  Google Scholar 

  • Mahood G, Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11–30

    Article  Google Scholar 

  • Mahood G A, Stimac J A. 1990. Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Acta, 54(8): 2257–2276, doi: 10.1016/0016–7037(90)90050-U

    Article  Google Scholar 

  • Maitre R W L. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell

    Google Scholar 

  • Miki M, Matsuda T, Otofuji Y. 1990. Opening mode of the Okinawa Trough: paleomagnetic evidence from the South Ryukyu Arc. Tectonophysics, 175(4): 335–347

    Article  Google Scholar 

  • Miller D M, Goldstein S L, Langmuir C H. 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature, 368(368): 514–520

    Article  Google Scholar 

  • Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309–2322

    Article  Google Scholar 

  • Niu Y L, Wilson M, Humphreys E R, et al. 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes, 35(2): 310–327

    Google Scholar 

  • Okino K, Tokuyama H, HOTWATER Scientific Party. 2002. Deep-tow sonar “WADATSUMI” survey in the Okinawa Trough. Inter- Ridge News, 11(2): 36–39

    Google Scholar 

  • Park S H, Lee S M, Kamenov G D, et al. 2010. Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269(3–4): 339–349

    Article  Google Scholar 

  • Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47

    Article  Google Scholar 

  • Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285

    Article  Google Scholar 

  • Philpotts J A, Schnetzler C C. 1970. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta, 34(3): 307–322

    Article  Google Scholar 

  • Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921–944

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4): 325–394

    Article  Google Scholar 

  • Prægel N O, Holm P M. 2006. Lithospheric contributions to high- MgO basanites from the Cumbre Vieja volcano, La Palma, Canary Islands and evidence for temporal variation in plume influence. Journal of Volcanology and Geothermal Research, 149(3–4): 213–239

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 1–64

    Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07

    Article  Google Scholar 

  • Savov I P, Hickey-Vargas R, D'Antonio M, et al. 2006. Petrology and geochemistry of west Philippine basin basalts and early Palau- Kyushu arc volcanic clasts from ODP leg 195, site 1201D: implications for the early history of the Izu-Bonin-Mariana arc. Journal of Petrology, 47(2): 277–299

    Article  Google Scholar 

  • Schock H H. 1979. Distribution of rare-earth and other trace elements in magnetites. Chemical Geology, 26(1–2): 119–133

    Article  Google Scholar 

  • Shinjo R. 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chemical Geology, 157(1–2): 69–88

    Article  Google Scholar 

  • Shinjo R, Chung S L, Kato Y, et al. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591–10608

    Article  Google Scholar 

  • Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient backarc basin. Lithos, 54(3–4): 117–137

    Article  Google Scholar 

  • Shinjo R, Woodhead J D, Hergt J M. 2000. Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications. Contributions to Mineralogy and Petrology, 140(3): 263–282

    Article  Google Scholar 

  • Sibuet J C, Letouzey J, Barbier F, et al. 1987. Back arc extension in the Okinawa Trough. Journal of Geophysical Research: Atmospheres, 92(B13): 14041–14063

    Article  Google Scholar 

  • Sisson T W. 1991. Pyroxene-high silica rhyolite trace-element partition coefficients measured by ion microprobe. Geochimica et Cosmochimica Acta, 55(6): 1575–1585, doi: 10.1016/0016-7037(91)90129-S

    Article  Google Scholar 

  • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313–345

    Article  Google Scholar 

  • Taylor B, Martinez F. 2003. Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3–4): 481–497

    Article  Google Scholar 

  • Wang K L, Chung S L, Chen C H, et al. 1999. Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308(3): 363–376

    Article  Google Scholar 

  • Wang Yinxi, Gu Lianxing, Zhang Zunzhong, et al. 2006. Geochronology and Nd-Sr-Pb isotops of the bimodal volcanic rocks of the Bogda rift. Acta Petrologica Sinica (in Chinese), 22(5): 1215–1224

    Google Scholar 

  • Wang Jinrong, Li Taide, Tian Liping, et al. 2010. Late Paleozoic tec- tono-magmatic evolution in Bogda Orogenic Belt, Xinjiang: evidence from geochemistry of volcanic rocks. Acta Petrologica Sinica (in Chinese), 26(4): 1103–1115

    Google Scholar 

  • Wang Shugong, Liang Ruicai, Wang Yong, et al. 1998. Gravity and magnetic characteristics of the north part of the Okinawa Trough and geological interpretation. Marine Geology & Quaternary Geology (in Chinese), 18(4): 19–27

    Google Scholar 

  • White W M, Duncan R A. 1996. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. In: Basu A, Hart S, eds. Earth Processes: Reading the Isotopic Code. Washington, DC: American Geophysical Union 95: 183–206

    Google Scholar 

  • Yamano M, Uyeda S, Foucher J P, et al. 1989. Heat flow anomaly in the middle Okinawa Trough. Tectonophysics, 159(3–4): 307–318

    Article  Google Scholar 

  • Yan Quanshu, Shi Xuefa. 2014. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu arc: a review. Acta Oceanologica Sinica, 33(4): 1–12

    Article  Google Scholar 

  • Yang Shuying, Fang Nianqiao. 2015. Geochemical variation of volcanic rocks from the South China Sea and neighboring land: implication for magmatic process and mantle structure. Acta Oceanologica Sinica, 34(12): 112–124, doi: 10.1007/s13131–015- 0759–8

    Article  Google Scholar 

  • Yang Yizeng, Wang Yan, Ye Risheng, et al. 2017. Petrology and geochemistry of Early Cretaceous A-type granitoids and late Mesozoic mafic dikes and their relationship to adakitic intrusions in the lower Yangtze River belt, Southeast China. International Geology Review, 59(1): 62–79

    Article  Google Scholar 

  • Zeng Zhigang, Yu Shaoxiong, Wang Xiaoyuan, et al. 2010. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanologica Sinica, 29(4): 48–61

    Article  Google Scholar 

  • Zhai Shikui, Chen Lirong, Wang Zhen, et al. 1997. Primary analysis on pumice magmatism model of the Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 17(1): 59–66

    Google Scholar 

  • Zhang Guoliang, Jiang Shaoqing, Ouyang Hegen, et al. 2010. Magma mixing in upper mantle: evidence from high Mg# olivine hosted melt inclusions in MORBs near East Pacific Rise 13°N. Chinese Science Bulletin, 55(16): 1643–1656

    Article  Google Scholar 

  • Zhang Liangliang, Liu Chuanzhou, Wu Fuyuan, et al. 2016. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: constraints on its formation setting. Lithos, 258–259: 133–148

    Article  Google Scholar 

  • Zhang Hongfu, Sun Min. 2002. Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. International Geology Review, 44(4): 370–382

    Article  Google Scholar 

  • Zhang Junjun, Zheng Yongfei, Zhao Zifu. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in eastcentral China. Lithos, 110(1–4): 305–326

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their heartfelt thanks to the Institute of Oceanology, Chinese Academy of Sciences for the supplied samples, Liu Hongyan for help with the analysis of major elements, and Yin Xuebo for help with the analysis of the trace elements of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Additional information

Foundation item: The National Basic Research Program (973 Program) of China under contract No. 2013CB429700; the National Natural Science Foundation of China under contract Nos 41325021 and 41706052; the National Program on Global Change and Air- Sea Interaction under contract No. GASI-GEOGE-02; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11030302; the Special Fund for the Taishan Scholar Program of Shandong Province under contract No. ts201511061; the AoShan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology under contract No. 2015ASTP-0S17; the Innovative Talent Promotion Program under contract No. 2012RA2191; the Science and Technology Development Program of Shandong Province under contract No. 2013GRC31502; the Scientific and Technological Innovation Project Financially supported by Qingdao National Laboratory for Marine Science and Technology under contract Nos 2015ASKJ03 and 2016ASKJ13; the National High Level Talent Special Support Program, the CAS/SAFEA International Partnership Program for Creative Research Teams, and Qingdao Collaborative Innovation Center of Marine Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zeng, Z., Chen, S. et al. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source. Acta Oceanol. Sin. 37, 73–88 (2018). https://doi.org/10.1007/s13131-017-1118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-017-1118-8

Keywords

Navigation