Skip to main content
Log in

Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: constraints from mineral chemistry

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electon microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Ashwal LD (1993) Anorthosites. Springer, Berlin Heidelberg New York, pp 1–422

    Google Scholar 

  • Augustsson C (1999) Lapillituff som bevis för underjurassisk vulkanism av strombolikaraktär i Skåne. Examensarbete i Geologi vid Lunds Universitet 109:1–20

    Google Scholar 

  • Bailey DK (1982) Mantle metasomatism—continuing chemical change within the Earth. Nature 296:525–530

    Article  Google Scholar 

  • Ban M, Witt-Eickschen G, Klein M, Seck HA (2004) The origin of glasses in hydrous mantle xenoliths from the West Eifel, Germany: incongruent break down of amphibole. Contrib Mineral Petrol 148:511–523

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel composition in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Blundell D (1992) Integrated lithospheric cross section. In: Blundell D, Freeman R, Mueller S (eds) A continent revealed. The European Geotraverse. University Press, Cambridge, pp 102–109

    Google Scholar 

  • Bölau E (1965) Der tertiäre Vulkanismus in Zentralschonen, Südschweden. Acta Univ Lund 2:3–54

    Google Scholar 

  • Bonhomme MG, Welin E (1984) Rb–Sr and K–Ar isotopic data on shale and siltstone from the Visingsö Group, Lake Vättern Basin, Sweden. GFF 105:363–366

    Google Scholar 

  • Brown GM, Pinsent RH, Coisy P (1980) The petrology of spinel-peridotite xenoliths from the Massif Central, France. Am J Sci 280-A:471–498

    Google Scholar 

  • Bylund G, Halvorsen E (1993) Palaeomagnetic study of Mesozoic basalts from Scania, southernmost Sweden. Geophys J Int 114:138–144

    Article  Google Scholar 

  • Bylund G, Johansson L, Johansson I, Solyom S, Nilsson M, Rodhe A, Gorbatschev R (1988) Mafic dyke swams of southernmost Sweden: excursion guide. In: International symposium on mafic dykes and magmatism in rifting and intraplate environments, pp 1–40

  • Cawthorn RG (1996) Layered Intrusions. Elsevier, Amsterdam, pp 231–256

    Google Scholar 

  • Dixon JE, Fitton JG, Frost RTC (1981) The tectonic significance of post-Carboniferous igneous activity in the North-Sea basin. In: Illing LV, Hobson GD (eds) Petroleum geology of the continental shelf of North–West Europe. Heyden & Son, London, pp 121–137

    Google Scholar 

  • Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J Petrol 42:233–250

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromegnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • El-Kelani R, Jentzsch G, Schreiber U (1998) Gravity anomalies and subsurface geology in the Westerwald volcanic area, Germany. Geol Rundsch 87:381–393

    Article  Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley Pipes, South Africa. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic, London, pp 221–311

    Google Scholar 

  • Erlström M, Thomas SA, Deeks B, Sivhed U (1997) Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area. Tectonophysics 271:191–215

    Article  Google Scholar 

  • Franz L, Wirth R (1997) Thin intergranular melt films and melt pockets in spinel peridotite xenoliths from the Rhön area (Germany): early stage of melt generation by grain boundary melting. Contrib Mineral Petrol 129:268–283

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. EPSL 38:129–176

    Article  Google Scholar 

  • Furnes H, Elvsborg A, Malm OA (1982) Lower and Middle Jurassic alkaline magmatism in the Egersund Sub-Basin, North Sea. Mar Geol 46:53–69

    Article  Google Scholar 

  • Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52

    Article  Google Scholar 

  • Glahn A, Sachs PM, Achauer U (1992) A teleseismic and petrological study of the crust and upper mantle beneath the geothermal anomaly Urach/SW-Germany. Phys Earth Planet Inter 69:176–206

    Article  Google Scholar 

  • Green HW, Gueguen Y (1974) Origin of kimberlite pipes by diapiric upwelling in the upper mantle. Nature 249:617–620

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magma. Contrib Mineral Petrol 15:103–190

    Article  Google Scholar 

  • Griffin WL, Kresten P (1987) Scandinavia—the carbonatite connection. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 101–106

    Google Scholar 

  • Hawkesworth CJ, Norry MJ (1983) Continental basalts and mantle xenoliths. Shiva geology series, Cheshire, pp 1–272

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Huckenholz HG, Büchel G (1988) Tertiärer Vulkanismus der Hocheifel. Fortschr Mineral 66:34–82

    Google Scholar 

  • Johansson L, Johansson Å (1990) Isotope geochemistry and age relationships of mafic intrusions along the Protogine Zone, southern Sweden. Precambrian Res 48:395–414

    Article  Google Scholar 

  • Katzung G (2001) The caledonides at the southern margin of the East European Craton. Neues Jahrb Geol Paläontol Abh 222:3–53

    Google Scholar 

  • Klingspor I (1973) A preliminary report on the dating by the K/Ar method of the basalt neck at Göbnehall, southern Sweden. GFF 95:287–289

    Google Scholar 

  • Klingspor I (1976) Radiometric age-determination of basalts, dolerites and related syenite in Skåne, southern Sweden. GFF 98:195–216

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith D, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcomission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, pp 1–236

    Google Scholar 

  • Lenoir X, Garrido CJ, Bodinier J-L, Dautria J-M (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. EPSL 181:359–375

    Article  Google Scholar 

  • McDonough WF (1991) Chemical and isotopic systematics of continental lithospheric mantle. In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks and mantle xenoliths. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, pp 478–485

    Google Scholar 

  • McDonough WF, Rudnick RL (1998) Mineralogy and composition of the upper mantle. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy: Physics Chemistry of the Earth’s Deep Interior, 37:139–164

  • Menzies MA (1983) Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing Limited, Cheshire, pp 92–110

    Google Scholar 

  • Menzies MA (1990) Petrology and geochemistry of the continental mantle: a historical perspective. In: Menzies MA (ed) Continental mantle. Science Publications, Oxford, pp 31–54

    Google Scholar 

  • Nicolas A, Lucazeau F, Bayer R (1987) Peridotite xenoliths in Massif Central basalts, France: textural and geophysical evidence for asthenospheric diapirism. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 563–574

    Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, Chichester, pp 1–844

    Google Scholar 

  • Nixon PH, Boyd FR (1973) Petrogenesis of the granular and sheared ultrabasic nodule suite in Kimberlites. In: Nixon PH (ed) Lesotho Kimberlites, Lesotho National Development Corporation, pp 48–56

  • Norin R (1933) Mineralogische und Petrologische Studien an den Basalten Schonens. GFF 52:101–149

    Google Scholar 

  • Norin R (1934) Zur Geologie der südschwedischen Basalte. GFF 75:1–175

    Google Scholar 

  • Obst K, Hammer J, Katzung G, Korich D (2004a) The Mesoproterozoic basement in the southern Baltic Sea: insights from the G 14-1 off-shore borehole. Int J Earth Sci 93:1–12

    Article  Google Scholar 

  • Obst K, Solyom Z, Johansson L (2004b) Permo-Carboniferous extension-related magmatism at the southwestern margin of the Fennoscandian Shield. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ 223:259–288

  • Olesen O, Smethurst MA, Torsvik TH, Bidstrup T (2004) Sveconorwegian igneous complexes beneath the Norwegian–Danish Basin. Tectonophysics 387:105–130

    Article  Google Scholar 

  • Pascal C, Cloething SAPL, Davies GR (2004) Asymmetric lithosphere as the cause of rifting magmatism in the Oslo Graben. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ 223:259–288

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry: the mantel and core, vol 2. Elsevier, Amsterdam, pp 171–275

  • Poudjom Djomani YH, Fairhead JD, Griffin WL (1999) The flexural rigidity of Fennoscandia: reflection of the tectonothermal age of the lithospheric mantle. EPSL 174:139–154

    Article  Google Scholar 

  • Printzlau I (1973) Vulkaner i Skåner. VARV Bladet Med Aeldste Nyheder 1:19–27

    Google Scholar 

  • Printzlau I, Larsen O (1972) K/Ar determination on alkaline olivine basalts from Skåne, southern Sweden. GFF 94:259–269

    Google Scholar 

  • Sachs PM, Hansteen TH (2000) Pleistocene underplating and metasomatism of the lower continental crust: a xenolith study. J Petrol 41:331–356

    Article  Google Scholar 

  • Sachtleben T, Seck HA (1981) Chemical control of Al-solubility in orthopyroxene and its implication on pyroxene geothermometry. Contrib Mineral Petrol 78:157–165

    Article  Google Scholar 

  • Shaw CSJ, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral—melt reaction. Mineral Petrol 74:163–187

    Article  Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson DG, Carlson RW (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71:289–322

    Article  Google Scholar 

  • Söderlund U (1999) Geochronology of tectonothermal events in the parautochthonous eastern segment of the Sveconorwegian (Grenvillian) orogen, Southwest Sweden. PhD Thesis, Universtity of Lund, pp 1–140

  • Stosch H-G, Seck HA (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Article  Google Scholar 

  • Tappe S (2004) Mesozoic mafic alkaline magmatism of southern Scandinavia. Contrib Mineral Petrol 148:312–334

    Article  Google Scholar 

  • Tappe S, Obst K, Solyom Z (2001) Geochemische Untersuchungen an den Basalten Schonens (Südschweden). Terra Nostra 5:65–68

    Google Scholar 

  • Törnebohm AE, Hennig A (1904) Beskrifning till blad 1 och 2. SGU Ser A1, Af 1–198

  • Tralau H (1973) En palynologisk åldersbestämning av vulkanisk aktivitet i Skåne. Fauna Och Flora 68:121–125

    Google Scholar 

  • Wager LR, Brown GM (1968) Layered igneous rocks. Freeman, San Francisco, pp 1–588

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Werling F, Altherr R (1997) Thermal evolution of the lithosphere beneath the French Massif Central as deducted from geothermobarometry on mantle xenoliths. Tectonophysics 275:119–141

    Article  Google Scholar 

  • White RW (1966) Ultramafic inclusions in Basaltic Rocks from Hawaii. Contrib Mineral Petrol 12:245–314

    Article  Google Scholar 

  • Wikman H, Sivhed U (1993) Beskrivning till berggrundskartan Kristianstad SV. SGU Af 155:1–106

    Google Scholar 

  • Wilson JR, Esbensen KH, Thy P (1981) A new pyroxene fractionation trend from a layered basic intrusion. Nature 290:325–326

    Article  Google Scholar 

  • Wilson JR, Robins B, Nielsen FM, Duchesne JC, Vander Auwera J (1996) The Bjerkreim-Sokndal layered intrusion, southwest Norway. In: Cawthorn RG (ed) Layered intrusions. Elsevier, Amsterdam, pp 231–256

    Google Scholar 

  • Witt-Eickschen G, Kramm U (1998) Evidence for the multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths. Contrib Mineral Petrol 131:258–272

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA, Reys C (1993) Multiple enrichment processes and their relationships in the subcrustal lithosphere beneath the Eifel (Germany). J Petrol 34:1–22

    Google Scholar 

  • Witt-Eickschen G, Kaminsky W, Kramm U, Harte B (1998) The Nature of young vein metasomatism in the lithosphere of the West Eifel (Germany): geochemical and isotopic constraints from composite mantle xenoliths from the Meerfelder Maar. J Petrol 39:155–185

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA, Mezger K, Eggins SM, Altherr R (2003) Lithospheric mantle evolution beneath the Eifel (Germany): constraints from Sr–Nd–Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. J Petrol 44:1077–1095

    Article  Google Scholar 

  • Wood JB, Banno S (1973) Garnet–orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Article  Google Scholar 

  • Xu Y, Mercier J-CC, Menzies MA, Ross JV, Harte B, Lin C, Shi L (1996) K-rich glass-bearing wehrlite xenoliths from Yitong, northeast China: petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol 125:406–420

    Article  Google Scholar 

  • Yaxley GM, Kamenetsky V, Green DH, Falloon TJ (1997) Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. EPSL 148:433–446

    Article  Google Scholar 

  • Ziegler PA (1990) Tectonic and palaeogeographic development of the North Sea rift system. In: Blundell DJ, Gibbs AD (eds) Tectonic evolution of the North Sea rifts. Clarendon Press, Oxford, pp 1–36

    Google Scholar 

  • Zinngrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol 122:79–96

    Article  Google Scholar 

Download references

Acknowledgments

We thank Zoltan Solyom (University of Lund) for logistical help during several field trips for collecting samples in Scania. Thanks to Andreas Kronz and Silke Triebold, who assisted the microprobe measurements at the Centre for Earth Sciences (Universität Göttingen). The manuscript has benefited from discussions with Dorrit Jacob, Matthias Barth, Sebastian Tappe, Dejan Prelević (Universität Mainz) and Vladica Cvetković (University of Salzburg). Thanks to Hillary Downes (University of London) and Thor H. Hansteen (Geomar Kiel) for constructive reviews. This project has been financially supported by the Deutsche Forschungsgemeinschaft (OB 114/6–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Rehfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehfeldt, T., Obst, K. & Johansson, L. Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: constraints from mineral chemistry. Int J Earth Sci (Geol Rundsch) 96, 433–450 (2007). https://doi.org/10.1007/s00531-006-0116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0116-4

Keywords

Navigation