Skip to main content

Advertisement

Log in

The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reaction

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Mantle-derived xenoliths from Baarley in the Quaternary West Eifel volcanic field contain six distinct varieties of glass in veins, selvages and pools. 1) Silica-undersaturated glass rich in zoned clinopyroxene microlites that forms jackets around and veins within the xenoliths. This glass is compositionally similar to groundmass glass in the host basanite. 2) Silica-undersaturated alkaline glass that contains microlites of Cr-diopside, olivine and spinel associated with amphibole in peridotites. This glass locally contains corroded primary spinel and phlogopite. 3) Silica-undersaturated glass associated with diopside, spinel ± olivine and rhönite microlites in partly to completely broken down amphibole grains in clinopyroxenites. 4) Silica-undersaturated to silica-saturated, potassic glass in microlite-rich fringes around phlogopite grains in peridotite. 5) Silica-undersaturated potassic glass in glimmerite xenoliths. 6) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites.

Geothermometry of orthopyroxene–clinopyroxene pairs (P = 1.5 GPa) gives temperatures of ∼ 850 °C for unveined xenoliths to 950–1020 °C for veined xenoliths. Clinopyroxene – melt thermobarometry shows that Cr-diopside – type 2 glass pairs in harzburgite formed at 1.4 to 1.1 GPa and ∼ 1250 °C whereas Cr-diopside – type 2 glass pairs in wehrlite formed at 0.9 to 0.7 GPa and 1120–1200 °C. This bimodal distribution in pressure and temperature suggests that harzburgite xenoliths may have been entrained at greater depth than wehrlite xenoliths.

Glass in the Baarley xenoliths has three different origins: infiltration of an early host melt different in composition from the erupted host basanite; partial melting of amphibole; reaction of either of these melts with xenolith minerals. The composition of type 1 glass suggests that jackets are accumulations of relatively evolved host magma. Mass balance modelling of the type 2 glass and its microlites indicates that it results from breakdown of disseminated amphibole and reaction of the melt with the surrounding xenolith minerals. Type 3 glass in clinopyroxenite xenoliths is the result of breakdown of amphibole at low pressure. Type 4 and 5 glass formed by reaction between phlogopite and type 2 melt or jacket melt. Type 6 glass associated with orthopyroxene is due to the incongruent dissolution of orthopyroxene by any of the above mentioned melts.

Compositional gradients in xenolith olivine adjacent to type 2 glass pools and jacket glass can be modelled as Fe–Mg interdiffusion profiles that indicate melt – olivine contact times between 0.5 and 58 days. Together with the clinopyroxene – melt thermobarometry calculations these data suggest that the glass (melt) formed over a short time due to decompression melting of amphibole and infiltration of evolved host melt. None of the glass in these xenoliths can be directly related to metasomatism or any other process that occurred insitu in the mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received November 23, 1999; revised version accepted September 5, 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, C., Klügel, A. The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reaction. Mineralogy and Petrology 74, 163–187 (2002). https://doi.org/10.1007/s007100200003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007100200003

Keywords

Navigation