Skip to main content
Log in

Nature and evolution of the Late Cretaceous lithospheric mantle beneath the eastern Jiangnan orogenic belt: constraints from peridotite xenoliths

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The nature and evolution of the Late Mesozoic lithospheric mantle of the South China Block (SCB) and the influence of subduction of the (paleo-) Pacific plate on it are still highly controversial. A volcanic pipe containing plentiful peridotite xenoliths was newly identified in the eastern Jiangnan orogenic belt of the SCB, which provides us with the possibility to solve the above-mentioned disputes. The host olivine basalts yield a whole-rock K–Ar age of 73 Ma, thus indicating Late Cretaceous magmatic activity. The peridotite xenoliths are all spinel lherzolites, with Mg# in olivine ranging from 87.6 to 89.0, Al2O3 in ortho- and clinopyroxene ranging, respectively, from 3.93 wt% to 4.97 wt% and from 5.30 wt% to 7.00 wt%, and Cr# in spinel ranging from 10.3 to 13.7, all of which are characteristics of a fertile lithospheric mantle. The clinopyroxenes from the peridotite xenoliths show light/heavy rare earth element (L/HREE) fractionation (i.e. (La/Yb)N = 1.69–3.91), which is different from the LREE-depleted patterns of Middle-Late Jurassic peridotite xenoliths. Besides, the 87Sr/86Sr(t) and εNd(t) values of clinopyroxene vary from 0.7044 to 0.7052 and from 0.6 to 2.8, respectively, which corresponds to a very weakly depleted mantle source. Collectively, the mineral chemistry of peridotite xenoliths and the trace elemental and Sr–Nd isotopic compositions of clinopyroxene both suggest that the lithospheric mantle beneath the eastern Jiangnan orogenic belt underwent a low degree of partial melting (i.e. 1%–3% batch melting or 2%–3% fractional melting), followed by silicate melt metasomatism, the metasomatic agent being derived from a subducted oceanic plate. Combined with previous studies on peridotite xenoliths of different ages, we outline a complete Phanerozoic lithospheric mantle evolution of the SCB and propose that the subduction of the (paleo-) Pacific plate contributed both material and energy to the modification of the lithospheric mantle since the Cretaceous (and possibly until the Eocene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Zhang et al. 2020). JS-PY fault zone: Jiangshan-Shaoxing and Pingxiang-Yushan fault zone, NY-JH fault zone: Ningyuan-Jianghua fault zone

Fig. 2

modified from the 1:250,000 geological map of the No. 332 geological team)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

modified from Norman (1998). Numbers along the modeling curves represent degrees of partial melting. Also shown are the values for clinopyroxenes from Paleozoic, Middle-Late Jurassic, and Cenozoic peridotite xenoliths. Data sources are the same as in Fig. 4

Fig. 8

modified from Zong and Liu (2018) and Coltorti et al. (1999), respectively. Data sources for clinopyroxenes from Paleozoic, Middle-Late Jurassic, and Cenozoic peridotite xenoliths are the same as in Fig. 4

Fig. 9

Similar content being viewed by others

References

  • Ackerman L, Mahlen N, Jelínek E, Medaris LG Jr, Ulrych J, Strnad L, Mihaljevič M (2007) Geochemistry and evolution of subcontinental lithospheric mantle in central Europe: evidence from peridotite xenoliths of the Kozákov volcano, Czech Republic. J Petrol 48:2235–2260

    Article  Google Scholar 

  • Bjerg EA, Ntaflos T, Thöni M, Aliani P, Labudia CH (2009) Heterogeneous lithospheric mantle beneath northern Patagonia: evidence from Prahuaniyeu garnet- and spinel peridotites. J Petrol 50:1267–1298

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, pp 63–114

    Chapter  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Brueckner HK, Medaris LG Jr (2000) A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. J Metamorp Geol 18:123–133

    Article  Google Scholar 

  • Chen LH, Zhou XH (2005) Subduction-related metasomatism in the thinning lithosphere: evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China. Craton Geochem Geophys Geosyst 6:Q06008

    Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134:311–326

    Article  Google Scholar 

  • Embey-Isztin A, Dobosi G, Bodinier JL, Bosch D, Jenner GA, Pourtales S, Bruguier O (2014) Origin and significance of poikilitic and mosaic peridotite xenoliths in the western Pannonian Basin: geochemical and petrological evidences. Contrib Mineral Petrol 168:1054

    Article  Google Scholar 

  • Gao S, Rudnick RL, Xu WL, Yuan HL, Liu YS, Walker RJ, Puchtel IS, Liu XM, Huang H, Wang XR, Yang J (2008) Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett 270:41–53

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG (1999) The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation: a tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Publ, Houston, pp 13–46

    Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  Google Scholar 

  • Guo F, Wu YM, Zhang B, Zhang XB, Zhao L, Liao J (2021) Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific plate in SE China: an overview. Earth Sci Rev 212:103448

    Article  Google Scholar 

  • Harvey J, Yoshikawa M, Hammond SJ, Burton KW (2012) Deciphering the trace element characteristics in Kilbourne Hole peridotites xenoliths: melt-rock interaction and metasomatism beneath the Rio Grande Rift, SW USA. J Petrol 53:1709–1742

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hu J, Jiang N, Carlson RW, Guo JH, Fan WB, Huang F, Zhang SQ, Zong KQ, Li TJ, Yu HM (2019) Metasomatism of the crust-mantle boundary by melts derived from subducted sedimentary carbonates and silicates. Geochim Cosmochim Acta 260:311–328

    Article  Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J Petrol 11:2177–2210

    Article  Google Scholar 

  • Kourim F, Bodinier JL, Alard O, Bendaoud A, Vauchez A, Dautria JM (2014) Nature and evolution of the lithospheric mantle beneath the Hoggar Swell (Algeria): a record from mantle xenoliths. J Petrol 55:2249–2280

    Article  Google Scholar 

  • Lee CTA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Annu Rev Earth Planet Sci 39:59–90

    Article  Google Scholar 

  • Li ZX, Li XH (2007) Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35:179–182

    Article  Google Scholar 

  • Li FL, Zhou HW, Tang ZC, Li YL, Wang FX, Xu YC, Qin HF, Luo W, Guan CG (2011) U-Pb ages, geochemistry and tectonic implications of mafic dyke swarms in Mugua, Chun’an county, Zhejiang Province. Geochimica 40:22–34 (in Chinese with English abstract)

    Google Scholar 

  • Li ZL, Zhou J, Mao JR, Yu MG, Li YQ, Hu YZ, Wang HH (2013) Age and geochemistry of the granitic porphyry from the northwestern Zhejiang Province, SE China, and its geological significance. Acta Petrol Sin 29:3607–3622 (in Chinese with English abstract)

    Google Scholar 

  • Li XY, Zheng JP, Xiong Q, Zhou X, Xiang L (2018) Triassic rejuvenation of unexposed Archean-Paleoproterozoic deep crust beneath the western Cathaysia block, South China. Tectonophysics 724–725:65–79

    Article  Google Scholar 

  • Liu CZ, Liu ZC, Wu FY, Chu ZY (2012) Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: geochemical and Re-Os isotopic results from Ningyuan mantle xenoliths. Chem Geol 291:186–198

    Article  Google Scholar 

  • Liu CZ, Wu FY, Sun J, Chu ZY, Yu XH (2013) Petrology, geochemistry and Re-Os isotopes of peridotite xenoliths from Maguan, Yunnan Province: implications for the Cenozoic mantle replacement in southwestern China. Lithos 168–169:1–14

    Article  Google Scholar 

  • Liu CZ, Zhang C, Liu ZC, Sun J, Chu ZY, Qiu ZL, Wu FY (2017) Formation age and metasomatism of the sub-continental lithospheric mantle beneath southeast China: Sr-Nd-Hf-Os isotopes of Mingxi mantle xenoliths. J Asian Earth Sci 145:591–604

    Article  Google Scholar 

  • Lu JG, Zheng JP, Griffin WL, Yu CM (2013) Petrology and geochemistry of peridotite xenoliths from the Lianshan region: nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Res 23:161–175

    Article  Google Scholar 

  • Ma Q, Xu YG (2021) Magmatic perspective on subduction of Paleo-Pacifc plate and initiation of big mantle wedge in East Asia. Earth Sci Rev 213:103473

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226

    Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Niu YL (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu YL, Hékinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329

    Article  Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1996) 4-D lithosphere mapping: methodology and examples. Tectonophysics 262:3–18

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2014) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 169–253

    Chapter  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonate metasomatism in northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Salters VJ, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05004

    Article  Google Scholar 

  • Shu LS, Wang JQ, Yao JL (2019) Tectonic evolution of the eastern Jiangnan region, South China: new findings and implications on the assembly of the Rodinia supercontinent. Precambrian Res 322:42–65

    Article  Google Scholar 

  • Špaček P, Ackerman L, Habler G, Abart R, Ulrych J (2013) Garnet breakdown, symplectite formation and melting in basanite-hosted peridotite xenoliths from Zinst (Bavaria, Bohemian Massif). J Petrol 54:1691–1723

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Ying JF, Su BX, Chu ZY, Xiao Y, Zhao XM (2013) Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization. Gondwana Res 23:130–140

    Article  Google Scholar 

  • Tang YJ, Ying JF, Zhao YP, Xu XR (2021) Nature and secular evolution of the lithospheric mantle beneath the North China Craton. Sci China Earth Sci 64:1492–1503

    Article  Google Scholar 

  • Wang SS (1983) Age determinations of 40Ar-40Ar, 40Ar-39Ar and radiogenic 40Ar released characteristics on K-Ar geostandards of China. Sci Geol Sin 4:315–323 (in Chinese with English abstract)

    Google Scholar 

  • Wang YJ, Fan WM, Zhang GW, Zhang YH (2013) Phanerozoic tectonics of the South China block: key observations and controversies. Gondwana Res 23:1273–1305

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Witt-Eickschen G, Kramm U (1997) Mantle upwelling and metasomatism beneath central Europe: geochemical and isotopic constraints from mantle xenoliths from the Rhön (Germany). J Petrol 38:479–493

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Wu FY, Ji WQ, Sun DH, Yang YH, Li XH (2012) Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos 150:6–25

    Article  Google Scholar 

  • Xia QK, Xing LB, Feng M, Liu SC, Yang XZ, Hao YT (2010) Water content and element geochemistry of peridotite xenoliths hosted by early-Jurassic basalt in Ningyuan, Hunan Province. Acta Petrol Mineral 29:113–124 (in Chinese with English abstract)

    Google Scholar 

  • Xia Y, Xu XS, Niu YL, Liu L (2018) Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision. Precambrian Res 309:56–87

    Article  Google Scholar 

  • Xia QK, Liu J, Kovács I, Hao YT, Li P, Yang XZ, Chen H, Sheng YM (2019) Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. Natl Sci Rev 6:125–144

    Article  Google Scholar 

  • Xiao Y, Zhang HF, Su BX, Liang Z, Zhu B, Sakyi PA (2019) Subduction-driven heterogeneity of the lithospheric mantle beneath the Cathaysia block. South China. J Asian Earth Sci 186:104062

    Article  Google Scholar 

  • Xu YG, Menzies MA, Bodinier JL, Bedini RM, Vroon P, Mercier JCC (1998) Melt percolation and reaction atop a plume: evidence from the poikiloblastic peridotite xenoliths from Borée (Massif Central, France). Contrib Mineral Petrol 132:65–84

    Article  Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2003a) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188

    Article  Google Scholar 

  • Xu YG, Menzies MA, Thirlwall MF, Huang XL, Liu Y, Chen XM (2003b) “Reactive” harzburgites from Huinan, NE China: products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 67:487–505

    Article  Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Wang XL, Pearson NJ, He ZY (2007) The crust of Cathaysia: age, assembly and reworking of two terranes. Precambrian Res 158:51–78

    Article  Google Scholar 

  • Xu XS, Griffin WL, O’Reilly SY, Pearson NJ, Geng HY, Zheng JP (2008) Re-Os isotopes of sulfides in mantle xenoliths from eastern China: progressive modification of lithospheric mantle. Lithos 102:43–64

    Article  Google Scholar 

  • Xu R, Liu YS, Tong XR, Hu ZC, Zong KQ, Gao S (2013a) In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification. Chem Geol 354:107–123

    Article  Google Scholar 

  • Xu WL, Zhou QJ, Pei FP, Yang DB, Gao S, Liu QL, Yang YH (2013b) Destruction of the North China Craton: delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Res 23:119–129

    Article  Google Scholar 

  • Xu YG, Li HY, Hong LB, Ma L, Ma Q, Sun MD (2018) Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci China Earth Sci 61:869–886

    Article  Google Scholar 

  • Yan J, Hou TJ, Wang AG, Wang DE, Zhang DY, Weng WF, Liu JM, Liu XQ, Li QZ (2017) Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province. Sci China Earth Sci 60:1920–1941

    Article  Google Scholar 

  • Yao JL, Cawood PA, Shu LS, Zhao GC (2019) Jiangnan orogen, South China: a ~970–820 Ma Rodinia margin accretionary belt. Earth Sci Rev 196:102872

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonate metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Yu JH, O’Reilly SY, Wang LJ, Griffin WL, Zhou MF, Zhang M, Shu LS (2010) Components and episodic growth of Precambrian crust in the Cathaysia block, South China: evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Res 181:97–114

    Article  Google Scholar 

  • Zangana NA, Downes H, Thirlwall MF, Marriner GF, Bea F (1999) Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chem Geol 153:11–35

    Article  Google Scholar 

  • Zhang HF (2009) Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull 54:3417–3437

    Google Scholar 

  • Zhang HF, Sun M, Lu FX, Zhou XH, Zhou MF, Liu YS, Zhang GH (2001) Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J 35:315–331

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol 155:271–293

    Article  Google Scholar 

  • Zhang H, Zheng JP, Lu JG, Pan SK, Zhao Y, Lin AB, Xiang L (2018) Composition and evolution of the lithospheric mantle beneath the interior of the South China block: insights from trace elements and water contents of peridotite xenoliths. Contrib Mineral Petrol 173:53

    Article  Google Scholar 

  • Zhang H, Zheng JP, Zhou YQ, Pan SK, Xiong Q, Lin AB, Zhao Y (2020) Mesozoic lithospheric modification and replacement beneath the Cathaysia block: mineral chemistry and water contents of the Daoxian peridotite xenoliths. Lithos 258–259:105385

    Article  Google Scholar 

  • Zhang H, Zheng JP, Lu JG, Lin AB, Zhou YQ, Zhao Y (2021) Nature and evolution of the lithospheric mantle beneath the South China. Lithos 398–399:106361

    Article  Google Scholar 

  • Zhao GC, Cawood PA (2012) Precambrian geology of China. Precambrian Res 222–223:13–54

    Article  Google Scholar 

  • Zheng YF (2019) Subduction zone geochemistry. Geosci Front 10:1223–1254

    Article  Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Zhang M, Lu FX, Liu GL (2004) Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos 74:41–65

    Article  Google Scholar 

  • Zheng JP, Griffin WL, Li LS, O’Reilly SY, Pearson NJ, Tang HY, Liu GL, Zhao JH, Yu CM, Su YP (2011) Highly evolved Archean basement beneath the western Cathaysia block, South China. Geochim Cosmochim Acta 75:242–255

    Article  Google Scholar 

  • Zheng YF, Xu Z, Zhao ZF, Dai LQ (2018) Mesozoic mafic magmatism in North China: implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci 61:353–385

    Article  Google Scholar 

  • Zheng JP, Dai HK, Zhang H (2019) Refertilization and replacement of lithospheric mantle beneath the eastern China. Bull Mineral Petrol Geochem 38:201–216 (in Chinese with English abstract)

    Google Scholar 

  • Zhou XM, Sun T, Shen WZ, Shu LS, Niu YL (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29:26–33

    Article  Google Scholar 

  • Zhu RX, Xu YG (2019) The subduction of the west Pacific plate and the destruction of the North China Craton. Sci China Earth Sci 62:1340–1350

    Article  Google Scholar 

  • Zhu G, Liu C, Gu CC, Zhang S, Li YJ, Su N, Xiao SY (2018) Oceanic plate subduction history in the western Pacific Ocean: constraint from late Mesozoic evolution of the Tan-Lu fault zone. Sci China Earth Sci 61:386–405

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

  • Zong KQ, Liu YS (2018) Carbonate metasomatism in the lithospheric mantle: implications for cratonic destruction in North China. Sci China Earth Sci 61:711–729

    Article  Google Scholar 

  • Zou DY, Liu YS, Hu ZC, Gao S, Zong KQ, Xu R, Deng LX, He DT, Gao CG (2014) Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: insights into the Paleo-Asian Ocean subduction-related melt/fluid–peridotite interaction. Geochim Cosmochim Acta 140:435–454

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Juan Wang from the School of Resources and Environmental Engineering of Hefei University of Technology for her guidance on the electron microprobe analysis. Thanks to Jia Chang and an anonymous reviewer for their careful language polishing and valuable comments, and to editor Hans Keppler for his insightful suggestions and editorial handling. This study was financially supported by the National Natural Science Foundation of China (Grant Numbers: 41672052 and 42030801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SN., Yan, J., Wang, DE. et al. Nature and evolution of the Late Cretaceous lithospheric mantle beneath the eastern Jiangnan orogenic belt: constraints from peridotite xenoliths. Contrib Mineral Petrol 177, 25 (2022). https://doi.org/10.1007/s00410-022-01895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01895-9

Keywords

Navigation