Skip to main content

Advertisement

Log in

P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Sauwald Zone, located at the southern rim of the Bohemian Massif in Upper Austria, belongs to the Moldanubian Unit. It exposes uniform biotite + plagioclase ± cordierite paragneisses that formed during the post-collisional high-T/low-P stage of the Variscan orogeny. Rare metapelitic inlayers contain the mineral assemblage garnet + cordierite + green spinel + sillimanite + K-feldspar + plagioclase + biotite + quartz. Mineral chemical and textural data indicate four stages of mineral growth: (1) peak assemblage as inclusions in garnet (stage 1): garnet core + cordierite + green spinel + sillimanite + plagioclase (An35–65); (2) post-peak assemblages in the matrix (stages 2, 3): cordierite + spinel (brown-green and brown) ± sillimanite ± garnet rim + plagioclase (An10–45); and (3) late-stage growth of fibrolite, muscovite and albite (An0–15) during stage 4. Calculation of the P–T conditions of the peak assemblage (stage 1) yields 750–840°C, 0.29–0.53 GPa and for the stage 2 matrix assemblage garnet + cordierite + green spinel + sillimanite + plagioclase 620–730°C, 0.27–0.36 GPa. The observed phase relations indicate a clockwise P–T path, which terminates below 0.38 GPa. The P–T evolution of the Sauwald Zone and the Monotonous Unit are very similar, however, monazite ages of the former are younger (321 ± 9 Ma vs. 334 ± 1 Ma). This indicates that high-T/low-P metamorphism in the Sauwald Zone was either of longer duration or there were two independent phases of late-Variscan low-P/high-T metamorphism in the Moldanubian Unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aranovich LYA, Podlesskii KK (1983) The cordierite–garnet–sillimanite–quartz equilibrium: experiments and applications. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, Berlin Heidelberg New York, pp 173–198

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75:328–344

    Google Scholar 

  • Blümel P, Schreyer W (1976) Progressive regional low-pressure metamorphism in Moldanubian metapelites of the northern Bavarian Forest. Krystallinikum 12:7–30

    Google Scholar 

  • Blümel P, Schreyer W (1977) Phase relations in pelitic and psammitic gneisses of the sillimanite-potash-feldspar and cordierite-potash-feldspar zones in the Moldanubicum of the Lam-Bodenmais area, Bavaria. J Petrol 18:431–459

    Google Scholar 

  • Finger F, Clemens JD (1995) Migmatization and secondary granitic magmas: effects of emplacement and crystallization of primary granitoids in Southern Bohemia, Austria. Contrib Mineral Petrol 120:311–326

    Article  Google Scholar 

  • Finger F, Helmy HM (1998) Composition and total-Pb model ages of monazite from high-grade paragneisses in the Abu Swayel area, southern Eastern Desert, Egypt. Mineral Petrol 62:269–289

    Article  Google Scholar 

  • Finger F, Steyrer HP (1995) A tectonic model for the Eastern Variscides: indications from a chemical study of amphibolites in the south-eastern Bohemian Massif. Geol Carp 46:137–150

    Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granites of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides; tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: Quantification and Modelling in the Variscan Belt. Geol Soc Spec Publ 179:35–61

  • Franke W, Zelazniewicz A (2000) The eastern termination of the Variscides: terrane correlation and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179:63–85

  • Frasl G, Finger F (1991) Geologisch-petrographische Exkursion in den österreichischen Teil des Südböhmischen Batholiths. Eur J Mineral Beih 3:23–40

    Google Scholar 

  • Friedl G (1997) U/Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. PhD Thesis, University of Salzburg, Austria, 242p

  • Friedl G, Finger F, Paquette JL, von Quandt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci (Geol Rundsch) 93:802–823

    Article  Google Scholar 

  • Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collision belt (the southeastern Bohemian Massif). Tectonics 15:1389–1413

    Article  Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol BA 119:1–43

    Google Scholar 

  • Fuchs G, Thiele O (1968) Erläuterungen zur Übersichtskarte des Kristallins im westlichen Mühlviertel und im Sauwald, Oberösterreich. Geol Bundesanst Wien: 96p

  • Fuhrman ML, Lindsley DH (1988) Ternary feldspar modelling and thermometry. Am Mineral 73:201–216

    Google Scholar 

  • Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc London 157:577–587

    Article  Google Scholar 

  • Gerdes A, Friedl G, Parrish RR, Finger F (2003) High resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53

    Google Scholar 

  • Gordon TM (1992) Solution of the inverse chemical equilibrium problem using data for individual species. Geochim Cosmochim Acta 56:1793–1800

    Article  Google Scholar 

  • Grauert B, Hanny R, Soptrajanova G (1974) Geochronology of a polymetamorphic and anatectic gneiss region: the Moldanubicum of the area Lam-Deggendorf, Eastern Bavaria, Germany. Contrib Mineral Petrol 45:37–63

    Article  Google Scholar 

  • Harley SL, Carrington DP (2001) The distribution of H2O between cordierite and granitic melt: H2O incorporation in cordierite and ist application to high-grade metamorphism and crustal anatexis. J Petrol 42:1593–1620

    Article  Google Scholar 

  • Harley SL, Thompson P, Hensen BJ, Buick IS (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. J Metamorphic Geol 20:71–86

    Article  Google Scholar 

  • Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides—a discussion of potential heat sources. Geol Soc Lond Spec Publ 179:387–399

    Article  Google Scholar 

  • Hoisch TD (1989) A muscovite–biotite geothermometer. Am Mineral 74:565–572

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally-consistent thermodynamic data set for phases of petrological interest. J Metamorphic Geol 16:309–343

    Article  Google Scholar 

  • Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayrische Wald (Variscan Belt, Germany). J Petrol 40:601–627

    Article  Google Scholar 

  • Kalt A, Corfu F, Wijbrans JP (2000) Time calibration of a PT path from a Variscan high-temperature low-pressure complex (Bayrische Wald, Germany) and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163

    Article  Google Scholar 

  • Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineral Petrol 58:197–214

    Article  Google Scholar 

  • Knop E, Mirwald PW (1998) Sodic cordierites: comparison of natural data and incorporation experiments. Mitt Österr Mineral Ges 143:316–321

    Google Scholar 

  • Knop E, Mirwald PW (2000) Cordierite as a monitor of fluid and melt sodium activity in metapelites, migmatites and granites: constraints from incorporation experiments. J Conf Abstr 5:58

    Google Scholar 

  • Knop E, Büttner S, Haunschmied B, Finger F, Mirwald P (1995) PT-conditions of Variscan metamorphism and migmatization in the Sauwald, Southern Bohemian Massif. Terra Nova 7, Abstr Suppl 1:316

  • Knop E, Tropper P, Finger F (2000) The PTa(H2O) Path of migmatites from the sauwald, southern Bohemian Massif: comparison between predicted and observed textural relations in migmatites. Eur J Mineral Beih 12:98

    Google Scholar 

  • Kolesov BA, Geiger CA (2000) Cordierite II: the role of CO2 and H2O. Am Mineral 85:1265–1274

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Linner M (1996) Metamorphism and partial melting of paragneisses of the Monotonous Group, SE Moldanubicum (Austria). Mineral Petrol 58:215–234

    Article  Google Scholar 

  • Massonne HJ, Szpurka Z (1997) Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O–MgO–Al2O3–SiO2–H2O and K2O–FeO–Al2O3–SiO2–H2O. Lithos 41:229–250

    Article  Google Scholar 

  • McMullin DWA, Berman RG, Greenwood HJ (1991) Calibration of the SGAM thermobarometer for pelitic rocks using data from phase equilibrium experiments and natural assemblages. Can Mineral 29:889–908

    Google Scholar 

  • Mirwald PW (1986) First cordierit ein geothermometer. Fortschr Mineral 64:119

    Google Scholar 

  • Mirwald PW (2000) The incorporation of H2O and CO2 in cordierite at varying sodium content under subsolidus conditions. Eur J Mineral Beih 12:128

    Google Scholar 

  • Mirwald PW, Knop E (1995) Der Einfluß der Kanalkomponenten H2O, CO2 und Na+ auf die oberste Stabilität von Mg–Cordierit—eine experimentelle Pilotstudie und ihre Bedeutung für das Granat–Cordierit-Geobarometer. Geol Paläont Mitt Innsbruck 20:153–164

    Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet CH, Provost A (1996) A fast, reliable, inexpensive in-situ dating technique: electron microprobe ages on monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Nichols GT, Berry RF, Green DH (1992) Internally consistent gahnitic spinel–cordierite–garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contrib Mineral Petrol 111:362–377

    Article  Google Scholar 

  • O’Brien PJ (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. Geol Soc London Spec Publ 179:369–386

    Article  Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent thermodynamic dataset with uncertainties and correlations: III: application methods, worked examples and a computer program. J Metamorphic Geol 6:173–204

    Google Scholar 

  • Powell R, Holland TJB (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, Mc Donough WF (2001) Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Scharbert S, Breiter K, Frank W (1997) The cooling history of the southern Bohemian Massif. J Czech Geol Soc 42/3:24

    Google Scholar 

  • Scheikl M, Mirwald PW (1999) Experimente zum Einfluß von Mischfluiden (Na+, CO2, und H2O) auf die obere Druckstabilität von Mg- und Fe-Cordierit. Eur J Mineral Beih 11:198

    Google Scholar 

  • Scheikl M, Mirwald PW (2000) The influence of different H2O–CO2 fluid compositions and Na-component on the P–T stability of Fe–cordierite. J Conf Abstr 5:91

    Google Scholar 

  • Schreyer W, Blümel P (1974) Progressive metamorphism in the Moldanubian of the Northern Bavarian Forest. Fortschr Mineral 52:154–165

    Google Scholar 

  • Schreyer W, Kullerud G, Ramdohr P (1964) Metamorphic conditions of ore and country rock of the Bodenmais, Bavaria, sulfide deposit. N Jb Mineral Abh 101:1–26

    Google Scholar 

  • Spear FS, Kohn M, Cheney JT (1999) P–T paths from anatectic pelites. Contrib Mineral Petrol 134:17–32

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop G (1997) Melt production during granulite-facies anatexis: experimental data from primitive metasedimentary protoliths. Contrib Mineral Petrol 128:352–370

    Article  Google Scholar 

  • Suzuki K, Adachi M, Tanaka T (1991) Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th–U–total Pb evidence from an electron microprobe monazite study. Sediment Geol 75:141–147

    Article  Google Scholar 

  • Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll L, Kennedy A (2004) U-PbSHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801

    Article  Google Scholar 

  • Thiele O (1962) Neue geologische Erkenntnisse aus dem Sauwald (O-Ö). Verh Geol BA 1962:117–129

    Google Scholar 

  • Thompson P, Harley SL, Carrington DP (2001) H2O–CO2 partitioning between fluid, cordierite and granitic melt at 5 kbar and 900°C. Contrib Mineral Petrol 142:107–118

    Google Scholar 

  • Thompson P, Harley SL, Carrington DP (2002) Sodium and potassium in cordierite—a potential thermometer for melts? Eur J Mineral 14:459–469

    Article  Google Scholar 

  • Troll G (1964) Geologische Übersichtskarte des Bayerischen Waldes 1:100.000. Geol Bav 58

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393

    Article  Google Scholar 

  • Vry JK, Brown PE, Valley JW (1990) Cordierite volatile content and the role of CO2 in high-grade metamorphism. Am Mineral 75:71–88

    Google Scholar 

  • Watt GR (1995) High-thorium monazite-(Ce) formed during disequilibrium melting of metapelites under granulite-facies conditions. Min Mag 59:735–743

    Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J (2002) Palaeozoic Amalgamation of Central Europe. An introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic Amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:1–18

  • Zwart HJ, Dornsiepen UF (1978) The tectonic framework of central and western Europe. Geol Mijnbow 57:627–654

    Google Scholar 

Download references

Acknowledgments

Financial support through FWF-projects 12248 and 15133 (to F.F.) is gratefully acknowledged. Edgar Mersdorf is thanked for his assistance on the electron microprobe, and Gudrun Riegler for drawing the geological map and the T-t path. The discussions with Erich Knop at the initial stages of the project are greatly appreciated. Kurt Krenn is thanked for obtaining the additional micro-Raman spectra of cordierite. The constructive reviews of the journal reviewers Christoph Hauzenberger and Patrick O’Brien, as well as the editorial handling by Christian Dullo, are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tropper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tropper, P., Deibl, I., Finger, F. et al. P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit?. Int J Earth Sci (Geol Rundsch) 95, 1019–1037 (2006). https://doi.org/10.1007/s00531-006-0082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0082-x

Keywords

Navigation