Skip to main content
Log in

Composition and total-Pb model ages of monazite from high-grade paragneisses in the Abu Swayel area, southern eastern desert, Egypt

Zusammensetzung und gesamtblei-Modellalter von Monazit aus hochgradig metamorphen Paragneisen der Abu swayel Region, südliche Ostwüste, Ägypten

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Monazites from high-grade metapelitic paragneisses from the southern Eastern Desert of Egypt (Abu Swayel area) were analysed with the electron microprobe mainly in an attempt to broadly constrain the metamorphic ages of the rocks by means of chemical Th(U)-Pb dating. Two samples were investigated, one showed weak signs of a greenschist facies overprint, the other one did not. For each sample, weighted average ages were calculated from long-time analyses of 18 (16) individual grains with a 5 μm beam placed in the grain centres. The average ages were almost the same (636± 10 Ma, 633±10 Ma). The monazites appeared chemically fairly uniform and homogeneous in both samples with ThO2 contents of ca. 3.3-4.5 wt.%, UO2 0.4-1.2 wt.%, La2O3 12–13 wt.%, Nd2O3 11-13 wt.%, Y2O3 1.8-2.6 wt.%. Some larger grains displayed a weak concentric zoning in the BSE image with increasing brightness near the rims. A microprobe traverse was laid across a zoned monazite from the slightly retrogressed sample. It was found that the U and Y contents were somewhat higher in the outer growth shell. The high Y contents at the rims argue for crystal growth under prograde temperature conditions and against a retrograde overgrowth. There appeared to be a tendency that the model ages become slightly younger towards the crystals rim (645±15 Ma in the core section versus 633±16 Ma in the rim section of the profile). However, the observed differences are interpreted as equivocal due to the limited resolution of EMP monazite dating. Clearly, the results do not support previous hypotheses, according to which Abu Swayel gneisses should belong to pre-Panafrican, mid-Proterozoic metamorphic sequences. Instead, the data accord with other 600-650 Ma metamorphic ages recently recognized near the contact of the East Sahara Craton and the Arabian Nubian Shield. The best interpretation is that high-grade metamorphism at that time occurred in connection with collisional crustal thickening, when a Panafrican terrane assembly was attached to the east Sahara Craton from the (present day) east. This event appears to be distinct from an earlier phase of high-grade regional metamorphism between ca. 700 and 750 Ma, which has been documented in other parts of the Arabian Nubian Shield.

Zusammenfassung

Monazite aus amphibolitfaziellen metapelitischen Paragneisen der Abu Swayel Region in Südägypten (SW Eastern Desert) wurden mit der Mikrosonde analysiert, unter anderem um die Metamorphosealter der Gesteine auf dem Weg einer chemischen Th(U)-Pb Datierung annäherungsweise zu bestimmen.

Zwei Proben wurden untersucht, eine davon wies eine lei Überprägung unter grünschieferfaziellen Bedingungen auf. In jeder Probe wurden 18 bzw. 16 Monazite, jeweils in den Kornzentren, mit langer Zählzeit und mit auf 5 gm defokussiertem Strahl analysiert. Die aus den Analysen errechneten mittleren Th(U)-Pb Alter waren in beiden Proben praktisch gleich (636 10 Ma, 633 ± 10 Ma). Auch die Chemismen der Monazite erwiesen sich in beiden Proben als sehr ähnlich und ziemlich homogen (ThO2 3.3-4.5 wt.%, UO2 0.4-1.2 wt.%, La2O3 12-13 wt.%, Nd2O3 11–13 wt.%, Y2O3 1.8-2.6 wt.%). Nur einzelne größere Körner ließen im BSE-Bild einen ganz schwachen konzentrischen Zonarbau mit größerer Helligkeit am Rand erkennen. Durch ein solches Korn aus der leicht retrograden Probe wurde ein chemisches Profil gelegt urn den Zonarbau zu quantifizieren bzw. die Altershomogenität zu testen. Die Randzone wies dabei leicht erhöhte Gehalte an U and Y auf. Die hohen Y Werte sprechen für eine Kristallisation unter hohen Temperaturen und gegen ein retrogrades Weiterwachsen. Die chemischen Modellalter waren im Kornzentrum im Schnitt etwas höher als am Kornrand (645±15, 633±16 Ma). Allfällige Zeitdifferenzen im Wachstum oder Bleiverlusteffekte waren allerdings innerhalb des methodischen Fehlers nicht sicher auflösbar. Die untersuchten Paragneise wurden bisher meist als Reste eines mittelproterozoischen, prä-panafrikanischen Kristallins angesehen. Die chemischen Modellalter für die Monazite bestätigen diese Ansicht aber nicht, sondern passen vielmehr gut zu anderen Metamorphosealtern von etwa 600 bis 650 Ma, welche in der letzten Zeit mehrfach entlang der Grenzzone zwischen dem Ostsahara-Kraton und dem ArabischNubischen Schild dokumentiert wurden. Die wahrscheinlichste Erklärung ist, daß diese Regionalmetamorphose durch das Andocken panafrikanischer Terrane an den Kraton verursacht wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75: 328–344

    Google Scholar 

  • Büttner St, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the south-eastern margin of the Bohemian Massif. Geol Rundschau 86: 21–38

    Google Scholar 

  • Dachs E (1990) High-pressure mineral assemblages and their breakdown-products in metasediments south of the Grossvenediger, Tauern Window, Austria. Schweiz Mineral Petrogr Mitt 66: 145–161

    Google Scholar 

  • De Wolf CP, Belshaw N, O'Nions RK (1993) A metamorphic history from micron-scale207Pb/206Pb chronometry of Archean monazite. Earth Planet Sci Lett 120: 207–220

    Google Scholar 

  • El Gaby S, List FK, Tehrani R (1990) The basement complex of the Eastern Desert and Sinai. In:Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 175–184

    Google Scholar 

  • El Shazley EM, Hashad AH, Sayyah TA, Bassyouni FA (1973) Geochronology of the Abu Swayel area, South Eastern Desert. Egypt J Geol 17: 1–18

    Google Scholar 

  • El Shazley EM, Bassyoumi FA, Abdel Khalelk ML (1977) Geology of the Greater Abu Swayel Area, Eastern Desert, Egypt. Egypt J Geol 19: 1–41

    Google Scholar 

  • El Ramly MF, Akaad MK (1960) The basement complex in the CED of Egypt between lat. 24°30′ and 25°40′. Geol Surv Egypt Pap No 8: 33p

  • Exley RA (1980) Microprobe studies on REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. Earth Planet Sci Lett 48: 97–110

    Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66: 113–117

    Google Scholar 

  • Finger F, Benisek A, Broska I, Friedl G, Haunschmid B, Schermaier A, Schindlmayr A, Schitter F, Steyrer HP (1996) Altersdatieren von Monaziten mit der Elektronenmikrosonde — Eine wichtige neue Methode in den Geowissenschaften. Erweiterte Kurzfassungen TSK 6. Fakultas Universitätsverlag, Wien

    Google Scholar 

  • Franz G, Andrehs G, Rhede D (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. Eur J Mineral 8: 1097–1118

    Google Scholar 

  • Friedl G (1997) U/Pb-Datierungen an Zirkonen and Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. Thesis, University of Salzburg, pp 242

  • Fritz H, Wallbrecher E, Khudeir AA, Abu El Ela F, Dallmeyer DR (1996) Formation of Neoproterozoic metamorphic core complexes during oblique convergence (Eastern Desert, Egypt). J African Earth Sci 23: 311–329

    Google Scholar 

  • Greiling RO, Abdeen MM, Dardir AA, El Akhal H, El Ramly MF, Kamal El Din GM, Osmann AF, Rashwan AA, Rice AHN, Sadek MF (1994) A structural synthesis of the Proterozoic Arabian Nubian Shield in Egypt. Geol Rundschau 83/3: 484–501

    Google Scholar 

  • Harms U, Darbyshire DPF, Denkler T, Hengst M, Schandelmeier H (1994) Evolution of the Neoproterozoic Delgo suture zone and crustal growth in Northern Sudan: geochemical and radiogenic isotope constraints. Geol Rundschau 83/3: 591–603

    Google Scholar 

  • Harris NBW, Hawkesworth CL, Ries AC (1984) Crustal evolution in northeast and east Africa from model Nd ages. Nature 309: 773–776

    Google Scholar 

  • Hassan MA, Hashad AH (1990) Precambrian of Egypt. In:Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 201–245

    Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Met Geol 15: 3–16

    Google Scholar 

  • Helmy HM (1996) Precious metal and base metal mineralization at Abu Swayel and Um Samiuki, Eastern Desert, Egypt. Thesis, El Minia University Egypt, 238p (unpublished)

  • Kingsbury JA, Miller CF, Wooden JL, Harrison TM (1993) Monazite paragenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, U.S.A: implications for thermochronometry. Chem Geol 110: 147–167

    Google Scholar 

  • Koziol AM (1989) Recalibration of the garnet-plagioclase-Al2SiO5-quartz barometer. Am Mineral 73: 216–223

    Google Scholar 

  • Kröner A, Greiling RO, Reischmann T, Hussein IM, Stern RJ, Dürr S, Krüger J, Zimmer M (1987) Pan-African crustal evolution in the Nubian segment of northeast Africa. In:Kröner A (ed) Proterozoic lithospheric evolution. Am Geophys Union Geodyn Ser 17: 235–257

  • Kröner A, Eyal M, Eyal Y (1990) Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implication for crustal accretion rates. Geology 18: 545–548

    Google Scholar 

  • Kröner A, Todt W, Hussein IM, Mansour M, Rashwan AAA (1992) Dating of late Proterozoic ophiolites in Egypt and the Sudan using the single zircon evaporation technique. Precamb Res 59: 15–32

    Google Scholar 

  • Kröner A, Krüger J, Rashwan AAA (1994) Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol Rundschau 83/3: 502–513

    Google Scholar 

  • Lanzirotti A, Hanson GN (1996) Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist, Connecticut, USA: implications for monazite stability in metamorphic rocks. Contrib Mineral Petrol 125: 332–340

    Google Scholar 

  • Ludwig KR (1980) Calculation of uncertainties of U-Pb isotope data. Earth Planet Sci Lett 46: 212–220

    Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96: 212–224

    Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet Ch, Provost A (1996) A fast, reliable, inexpensive insitu dating technique: electron microprobe ages on monazite. Chem Geol 131: 37–53

    Google Scholar 

  • Neumayr P, Hoinkes G, Puhl J, Mogessie A (1996) Metamorphic evolution of two Panafrican metamorphic core complexes in the Eastern Desert of Egypt: tectonic implications. Mitt Osterr Mineral Ges 141: 165–167

    Google Scholar 

  • Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27: 1431–1450

    Google Scholar 

  • Rhede D, Wendt I, Förster HJ (1996) A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem Geol 130: 247–253

    Google Scholar 

  • Shackleton RM (1994) Review of Late Proterozoic sutures, ophiolitec mélanges and tectonics of eastern Egypt and north-east Sudan. Geol Rundschau 83/3: 537–546

    Google Scholar 

  • Smith HA, Barreiro B (1990) Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Mineral Petrol 105: 602–615

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359–362

    Google Scholar 

  • Stern J, Kröner A, Bender R, Reischmann T, Dawoud AS (1994) Precambrian basement around Wadi Halfa, Sudan: a new perspective on the evolution of the East Sahara Craton. Geol Rundschau 83/3: 564–577

    Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronology and isotopic constraints on Late Proterozoic crustal evolution in the Eastern Desert of Egypt. Am J Sci 285: 97–127

    Google Scholar 

  • Sultan M, Tucker RD, El Alfy Z, Attia R, Ragab AG (1994) U-Pb (zircon) ages for the gneissic terrane west of the Nile, southern Egypt. Geol Rundschau 83/3: 514–522.

    Google Scholar 

  • Suzuki K, Adachi M, Tanaka T (1991) Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study. Sediment Geol 75: 141–147

    Google Scholar 

  • Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128: 391–405

    Google Scholar 

  • Taylor WEG, Hamed El, Kazzaz YA, Rashwan AA (1993) An outline of the tectonic framework for the Pan-African orogeny in the vicinity of Wadi Um Relan, SE Desert, Egypt. In:Thorweihe U, Schandlmeier H (eds) Geoscientific research in NE Africa and adjacent areas (Earth Evol Sci). Vieweg, Wiesbaden, pp 195–226

    Google Scholar 

  • Wust HJ, Todt W, Kröner A (1987) Conventional and single grain zircon ages for metasediments and granite clasts from the Eastern Desert of Egypt: evidence for active continental margin evolution in Pan-African times. Terra Cognita 7: 333–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finger, F., Helmy, H.M. Composition and total-Pb model ages of monazite from high-grade paragneisses in the Abu Swayel area, southern eastern desert, Egypt. Mineralogy and Petrology 62, 269–289 (1998). https://doi.org/10.1007/BF01178032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178032

Keywords

Navigation