Skip to main content
Log in

A review of deep learning algorithms for modeling drug interactions

  • Survey
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The interactions between therapeutics and their targets are an important part of the drug development process. To counter the cost, time and accuracy related issues, novel and efficient DL algorithms are required. These approaches have proven successful in quickly identifying and predicting possible drug interactions. Here, we examine computational strategies for predicting drug interactions in the context of drug development, focusing on artificial intelligence-based approaches. We start by providing a succinct overview of deep learning in drug development and drug interactions. Next, we review and evaluate AI-based methods used to forecast Drug–Target Interactions, drug–drug interactions, drug–disease interactions, and ploy-pharmacy side effects, including both sequential and graph-based modern DL algorithms. Lastly, we examine databases with their brief description and sources that are frequently utilized to research drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data was generated.

References

  1. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform. 35(1), 3–14 (2016). https://doi.org/10.1002/minf.201501008

    Article  Google Scholar 

  2. Wen, M., et al.: Deep-learning-based drug-target interaction prediction. J. Proteome Res. 16(4), 1401–1409 (2017). https://doi.org/10.1021/acs.jproteome.6b00618

    Article  Google Scholar 

  3. Shukla, P.K., et al.: Efficient prediction of drug–drug interaction using deep learning models. IET Syst. Biol. 14(4), 211–216 (2020). https://doi.org/10.1049/iet-syb.2019.0116

    Article  Google Scholar 

  4. K. Preuer, G. Klambauer, F. Rippmann, S. Hochreiter, T. Unterthiner, Interpretable deep learning in drug discovery. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11700 LNCS, pp. 331–345 (2019). https://doi.org/10.1007/978-3-030-28954-6_18.

  5. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep learning in drug discovery. Drug Discov. TodayDiscov. Today 23(6), 1241–1250 (2018). https://doi.org/10.1016/j.drudis.2018.01.039

    Article  Google Scholar 

  6. Lavecchia, A.: Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. TodayDiscov. Today 24(10), 2017–2032 (2019). https://doi.org/10.1016/j.drudis.2019.07.006

    Article  Google Scholar 

  7. Askr, H., Elgeldawi, E., Aboul Ella, H., Elshaier, Y.A.M.M., Gomaa, M.M., Hassanien, A.E.: Deep learning in drug discovery: an integrative review and future challenges, no. 0123456789. Springer, Netherlands (2022). https://doi.org/10.1007/s10462-022-10306-1

    Book  Google Scholar 

  8. Srinivasu, P.N., Shafi, J., Krishna, T.B., Sujatha, C.N., Praveen, S.P., Ijaz, M.F.: Using recurrent neural networks for predicting type-2 diabetes from genomic and tabular data. Diagnostics (2022). https://doi.org/10.3390/diagnostics12123067

    Article  Google Scholar 

  9. Praveen, S.P., Srinivasu, P.N., Shafi, J., Wozniak, M., Ijaz, M.F.: ResNet-32 and FastAI for diagnoses of ductal carcinoma from 2D tissue slides. Sci. Rep. 12(1), 1–16 (2022). https://doi.org/10.1038/s41598-022-25089-2

    Article  Google Scholar 

  10. Ghosh, S., Kim, S.K., Ijaz, M.F., Singh, P.K., Mahmud, M.: Classification of mental stress from wearable physiological sensors using image-encoding-based deep neural network. Biosensors (2022). https://doi.org/10.3390/bios12121153

    Article  Google Scholar 

  11. Subhan, F., et al.: Cancerous tumor controlled treatment using search heuristic (GA)-based sliding mode and synergetic controller. Cancers (Basel) (2022). https://doi.org/10.3390/cancers14174191

    Article  Google Scholar 

  12. Shafi, J., Woźniak, M., Sujatha, R.: 6G Driven fast computational networking framework for healthcare applications. IEEE Access 10(August), 94235–94248 (2022). https://doi.org/10.1109/ACCESS.2022.3203061

    Article  Google Scholar 

  13. Vallianatou, T., Giaginis, C., Tsantili-Kakoulidou, A.: The impact of physicochemical and molecular properties in drug design: Navigation in the ‘Drug-Like’ chemical space. Adv. Exp. Med. Biol. 822, 187–194 (2015). https://doi.org/10.1007/978-3-319-08927-0_21

    Article  Google Scholar 

  14. Lomenick, B.E.: Small molecule target identification using drug affinity responsive target stability (DARTS), vol. 1263, pp. 1–115. Springer, New York (2013). https://doi.org/10.1007/978-1-4939-2269-7

    Book  Google Scholar 

  15. Glassman, P.M., Muzykantov, V.R.: Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J. Pharmacol Exp. Ther.Pharmacol Exp. Ther. 370(3), 570–580 (2019). https://doi.org/10.1124/jpet.119.257113

    Article  Google Scholar 

  16. Alshammari, T.M.: Drug safety: the concept, inception and its importance in patients’ health. Saudi Pharm. J. 24(4), 405–412 (2016). https://doi.org/10.1016/j.jsps.2014.04.008

    Article  Google Scholar 

  17. Naqvi, A.A.T., Mohammad, T., Hasan, G.M., Hassan, M.I.: Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem.. Top. Med. Chem. 18(20), 1755–1768 (2019). https://doi.org/10.2174/1568026618666181025114157

    Article  Google Scholar 

  18. Rambhade, S., Chakarborty, A., Shrivastava, A., Patil, U.K., Rambhade, A.: A survey on polypharmacy and use of inappropriate medications. Toxicol. Int.. Int. 19(1), 68–73 (2012). https://doi.org/10.4103/0971-6580.94506

    Article  Google Scholar 

  19. Percha, B., Altman, R.B.: Informatics confronts drug–drug interactions. Trends Pharmacol. Sci.Pharmacol. Sci. 34(3), 178–184 (2013). https://doi.org/10.1016/j.tips.2013.01.006

    Article  Google Scholar 

  20. Huang, K., Fu, T., Glass, L.M., Zitnik, M., Xiao, C., Sun, J.: DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics 36(22–23), 5545–5547 (2020). https://doi.org/10.1093/bioinformatics/btaa1005

    Article  Google Scholar 

  21. Wang, L., et al.: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J. Comput. Biol.Comput. Biol. 25(3), 361–373 (2018). https://doi.org/10.1089/cmb.2017.0135

    Article  MathSciNet  Google Scholar 

  22. You, J., Mcleod, R.D., Hu, P.: Predicting drug–target interaction network using deep learning model. Comput. Biol. Chem.. Biol. Chem. 80(March), 90–101 (2019). https://doi.org/10.1016/j.compbiolchem.2019.03.016

    Article  Google Scholar 

  23. Mei, S., Zhang, K.: A machine learning framework for predicting drug–drug interactions. Sci. Rep. 11(1), 1–12 (2021). https://doi.org/10.1038/s41598-021-97193-8

    Article  MathSciNet  Google Scholar 

  24. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  25. Perlman, L., Gottlieb, A., Atias, N., Ruppin, E., Sharan, R.: Combining drug and gene similarity measures for drug–target elucidation. J. Comput. Biol.Comput. Biol. 18(2), 133–145 (2011)

    Article  Google Scholar 

  26. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  27. Shi, J.-Y., Yiu, S.-M.: SRP: A concise non-parametric similarity-rank-based model for predicting drug–target interactions. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1636–1641 (2015)

  28. Lt, K.: To err is human: building a safer health system. Inst. Med. Comm. Qual. Heal. Care Am. (2000)

  29. Takarabe, M., Kotera, M., Nishimura, Y., Goto, S., Yamanishi, Y.: Drug target prediction using adverse event report systems: a pharmacogenomic approach. Bioinformatics 28(18), i611–i618 (2012)

    Article  Google Scholar 

  30. Wang, Y.C., Zhang, C.H., Deng, N.Y., Wang, Y.: Kernel-based data fusion improves the drug–protein interaction prediction. Comput. Biol. Chem.. Biol. Chem. 35(6), 353–362 (2011). https://doi.org/10.1016/j.compbiolchem.2011.10.003

    Article  MathSciNet  Google Scholar 

  31. Pahikkala, T., et al.: Toward more realistic drug–target interaction predictions. Brief. Bioinform.Bioinform. 16(2), 325–337 (2015)

    Article  Google Scholar 

  32. Xia, Z., Wu, L.-Y., Zhou, X., Wong, S.T.C.: Semi-supervised drug–protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(2), 1–16 (2010)

    Google Scholar 

  33. Jacob, L., Vert, J.-P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Article  Google Scholar 

  34. Bock, J.R., Gough, D.A.: Virtual screen for ligands of orphan G protein-coupled receptors. J. Chem. Inf. Model. 45(5), 1402–1414 (2005)

    Article  Google Scholar 

  35. Lavecchia, A.: Machine-learning approaches in drug discovery: methods and applications. Drug Discov. TodayDiscov. Today 20(3), 318–331 (2015)

    Article  Google Scholar 

  36. He, Z., et al.: Predicting drug–target interaction networks based on functional groups and biological features. PLoS ONE 5(3), e9603 (2010)

    Article  Google Scholar 

  37. Yuan, Q., Gao, J., Wu, D., Zhang, S., Mamitsuka, H., Zhu, S.: DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics 32(12), i18–i27 (2016)

    Article  Google Scholar 

  38. Ezzat, A., Wu, M., Li, X., Kwoh, C.-K.: Computational prediction of drug–target interactions via ensemble learning. In: Comput Methods Drug Repurposing, pp. 239–254. Springer, New York (2019)

    Chapter  Google Scholar 

  39. Wang, L., You, Z.-H., Chen, X., Yan, X., Liu, G., Zhang, W.: RFDT: a rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein Pept. Sci.. Protein Pept. Sci. 19(5), 445–454 (2016). https://doi.org/10.2174/1389203718666161114111656

    Article  Google Scholar 

  40. Huang, Y., You, Z., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci.. Protein Pept. Sci. 19(5), 468–478 (2018). https://doi.org/10.2174/1389203718666161122103057

    Article  Google Scholar 

  41. Nascimento, A.C.A., Prudêncio, R.B.C., Costa, I.G.: A multiple kernel learning algorithm for drug–target interaction prediction. BMC Bioinformatics 17(1), 1–16 (2016). https://doi.org/10.1186/s12859-016-0890-3

    Article  Google Scholar 

  42. Cheng, F., et al.: Prediction of drug–target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. Comput. Biol. 8(5), e1002503 (2012)

    Article  Google Scholar 

  43. Ji, B.Y., You, Z.H., Jiang, H.J., Guo, Z.H., Zheng, K.: Prediction of drug–target interactions from multi-molecular network based on LINE network representation method. J. Transl. Med. 18(1), 1–11 (2020). https://doi.org/10.1186/s12967-020-02490-x

    Article  Google Scholar 

  44. An, J.Y., Meng, F.R., Yan, Z.J.: An efficient computational method for predicting drug–target interactions using weighted extreme learning machine and speed up robot features. BioData Min. 14(1), 1–17 (2021). https://doi.org/10.1186/s13040-021-00242-1

    Article  Google Scholar 

  45. Zhao, Z., Huang, W., Zhan, X., Pan, J., Huang, Y.: An ensemble learning-based method for inferring drug–target interactions combining protein sequences and drug fingerprints, vol. 2021 (2021)

  46. Yue, Y., He, S.: DTI-HeNE: a novel method for drug–target interaction prediction based on heterogeneous network embedding. BMC Bioinform. 22(1), 1–20 (2021). https://doi.org/10.1186/s12859-021-04327-w

    Article  Google Scholar 

  47. Chen, X., Liu, M.-X., Yan, G.-Y.: Drug–target interaction prediction by random walk on the heterogeneous network. Mol. Biosyst.Biosyst. 8(7), 1970–1978 (2012)

    Article  Google Scholar 

  48. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  49. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform. 35(1), 3–14 (2016)

    Article  Google Scholar 

  50. Ekins, S.: The next era: deep learning in pharmaceutical research. Pharm. Res. 33(11), 2594–2603 (2016)

    Article  Google Scholar 

  51. Napolitano, F., et al.: Drug repositioning: a machine-learning approach through data integration. J. Cheminform. 5(1), 1–9 (2013)

    Article  Google Scholar 

  52. Zong, N., Kim, H., Ngo, V., Harismendy, O.: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33(15), 2337–2344 (2017)

    Article  Google Scholar 

  53. Eslami Manoochehri, H., Nourani, M.: Drug–target interaction prediction using semi-bipartite graph model and deep learning. BMC Bioinform. 21(Suppl 4), 1–16 (2020). https://doi.org/10.1186/s12859-020-3518-6

    Article  Google Scholar 

  54. Lee, I., Keum, J., Nam, H.: DeepConv-DTI: Prediction of drug–target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol. Comput. Biol. 15(6), e1007129 (2019)

    Article  Google Scholar 

  55. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: Deep drug–target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018). https://doi.org/10.1093/bioinformatics/bty593

    Article  Google Scholar 

  56. Gao, K.Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., Zhang, P.: Interpretable drug target prediction using deep neural representation. IJCAI 2018, 3371–3377 (2018)

    Google Scholar 

  57. Redkar, S., Mondal, S., Joseph, A., Hareesha, K.S.: A machine learning approach for drug–target interaction prediction using wrapper feature selection and class balancing. Mol. Inform. (2020). https://doi.org/10.1002/minf.201900062

    Article  Google Scholar 

  58. Wang, Y., You, Z., Yang, S., Yi, H., Chen, Z., Zheng, K.: A deep learning-based method for drug–target interaction prediction based on long short-term memory neural network. BMC Med. Inform. Decis. Mak.Decis. Mak. 20(Suppl 2), 1–9 (2020). https://doi.org/10.1186/s12911-020-1052-0

    Article  Google Scholar 

  59. Thafar, M.A., et al.: DTi2Vec: drug–target interaction prediction using network embedding and ensemble learning. J. Cheminform. 13(1), 1–18 (2021). https://doi.org/10.1186/s13321-021-00552-w

    Article  Google Scholar 

  60. Zhang, Y., Jiang, Z., Chen, C., Wei, Q., Gu, H., Yu, B.: DeepStack—DTIs : predicting drug—target interactions using LightGBM feature selection and deep—stacked ensemble classifi. Interdiscip. Sci. Comput. Life Sci. (2021). https://doi.org/10.1007/s12539-021-00488-7

    Article  Google Scholar 

  61. Sun, J., Lu, Y., Cui, L., Fu, Q., Wu, H., Chen, J.: A method of optimizing weight allocation in data integration based on Q-learning for drug-target interaction prediction. Front. Cell Dev. Biol. 10(March), 1–10 (2022). https://doi.org/10.3389/fcell.2022.794413

    Article  Google Scholar 

  62. Ye, Q., Zhang, X., Lin, X.: Drug–target interaction prediction via multiple classification strategies. BMC Bioinform. 22, 1–18 (2022). https://doi.org/10.1186/s12859-021-04366-3

    Article  Google Scholar 

  63. Agarwal, S., Dugar, D., Sengupta, S.: Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model. 50(5), 716–731 (2010)

    Article  Google Scholar 

  64. Burges, C.J.C.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)

    Google Scholar 

  65. Kuang, Q., et al.: A kernel matrix dimension reduction method for predicting drug–target interaction. Chemom. Intell. Lab. Syst.. Intell. Lab. Syst. 162, 104–110 (2017)

    Article  Google Scholar 

  66. Wan, F., Hong, L., Xiao, A., Jiang, T., Zeng, J.: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 35(1), 104–111 (2019)

    Article  Google Scholar 

  67. Ban, T., Ohue, M., Akiyama, Y.: NRLMFβ: Beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction. Biochem. Biophys. Rep. 18, 100615 (2019)

    Google Scholar 

  68. Luo, Y., et al.: A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun.Commun. 8(1), 573 (2017)

    Article  Google Scholar 

  69. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug–target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033 (2013)

  70. Zhao, T., Hu, Y., Valsdottir, L.R., Zang, T., Peng, J.: Identifying drug–target interactions based on graph convolutional network and deep neural network. Brief. Bioinformat. (2020). https://doi.org/10.1093/bib/bbaa044

    Article  Google Scholar 

  71. Yang, Z., Zhong, W., Zhao, L., Yu-ChianChen, C.: MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction. Chem. Sci. 13(3), 816–833 (2022). https://doi.org/10.1039/d1sc05180f

    Article  Google Scholar 

  72. Peng, J., et al.: An end-to-end heterogeneous graph representation learning-based framework for drug–target interaction prediction. Brief. Bioinform.Bioinform. 22(5), 1–9 (2021). https://doi.org/10.1093/bib/bbaa430

    Article  Google Scholar 

  73. Zhang, R., Wang, Z., Wang, X., Meng, Z., Cui, W.: MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction. Brief. Bioinform.Bioinform. 24(2), bbad079 (2023)

    Article  Google Scholar 

  74. Boezer, M, Tavakol, M., Sajadi, Z.: FastDTI: drug–target interaction prediction using multimodality and transformers. In: Proceedings of the Northern Lights Deep Learning Workshop, vol. 4 (2023)

  75. Wu, H., et al.: AttentionMGT-DTA: a multi-modal drug–target affinity prediction using graph transformer and attention mechanism. Neural Netw.Netw. 169, 623–636 (2024)

    Article  Google Scholar 

  76. Liu, J., et al.: Drug–target interaction prediction via combining transformer and graph neural networks

  77. Feng, Y., Zhang, S.: Yue-Hua—DPDDI a deep predictor for drug–drug interactions.pdf, pp. 1–15 (2020)

  78. Vilar, S., Harpaz, R., Uriarte, E., Santana, L., Rabadan, R., Friedman, C.: Drug—drug interaction through molecular structure similarity analysis. J. Am. Med. Informat. Assoc. 19(6), 1066–1074 (2012)

    Article  Google Scholar 

  79. Ferdousi, R., Safdari, R., Omidi, Y.: Computational prediction of drug–drug interactions based on drugs functional similarities. J. Biomed. Inform. 70, 54–64 (2017)

    Article  Google Scholar 

  80. Gottlieb, A., Stein, G.Y., Oron, Y., Ruppin, E., Sharan, R.: INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol. Syst. Biol. 8(1), 592 (2012)

    Article  Google Scholar 

  81. Li, P., et al.: Large-scale exploration and analysis of drug combinations. Bioinformatics 31(12), 2007–2016 (2015)

    Article  Google Scholar 

  82. Shi, J.-Y., Gao, K., Shang, X.-Q., Yiu, S.-M.: LCM-DS: a novel approach of predicting drug–drug interactions for new drugs via Dempster-Shafer theory of evidence. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 512–515 (2016)

  83. Zhang, Y., Zheng, W., Lin, H., Wang, J., Yang, Z., Dumontier, M.: Data and text mining drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths. Bioinformatics 34(017), 828–835 (2018). https://doi.org/10.1093/bioinformatics/btx659

    Article  Google Scholar 

  84. Lim, S., Lee, K., Kang, J.: Drug drug interaction extraction from the literature using a recursive neural network. PLoS ONE 13(1), 1–17 (2018). https://doi.org/10.1371/journal.pone.0190926

    Article  Google Scholar 

  85. Loss, F., et al.: Drug–drug interaction extraction via recurrent hybrid convolutional neural networks with. Entropy (2019). https://doi.org/10.3390/e21010037

    Article  Google Scholar 

  86. Huang, D., Jiang, Z., Zou, L., Li, L.: Drug–drug interaction extraction from biomedical literature using support vector machine and long short term memory networks. Inf. Sci. (Ny) 415–416, 100–109 (2017). https://doi.org/10.1016/j.ins.2017.06.021

    Article  Google Scholar 

  87. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S.R., Varshosaz, J., Green, J.R.: A review of network-based approaches to drug repositioning. Brief. Bioinform.Bioinform. 19(5), 878–892 (2018)

    Article  Google Scholar 

  88. Zhang, Y., et al.: Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature. BMC Syst. Biol. (2016). https://doi.org/10.1186/s12918-016-0311-2

    Article  Google Scholar 

  89. Zheng, W., et al.: A graph kernel based on context vectors for extracting drug–drug interactions. J. Biomed. Inform. 61, 34–43 (2016). https://doi.org/10.1016/j.jbi.2016.03.014

    Article  Google Scholar 

  90. Han, X., Xie, R., Li, X., Li, J.: SmileGNN: drug-drug interaction prediction based on the SMILES and graph neural network. Life (2022). https://doi.org/10.3390/life12020319

    Article  Google Scholar 

  91. Vilar, S., Uriarte, E., Santana, L., Tatonetti, N.P., Friedman, C.: Detection of drug–drug interactions by modeling interaction profile fingerprints. PLoS ONE 8(3), e58321 (2013)

    Article  Google Scholar 

  92. Rohani, N., Eslahchi, C., Katanforoush, A.: ISCMF: Integrated similarity-constrained matrix factorization for drug–drug interaction prediction. Netw. Model. Anal. Heal. Informat. Bioinform. 9, 1–8 (2020)

    Google Scholar 

  93. Shtar, G., Rokach, L., Shapira, B.: Detecting drug–drug interactions using artificial neural networks and classic graph similarity measures. PLoS ONE 14(8), e0219796 (2019)

    Article  Google Scholar 

  94. Yu, H., et al.: Predicting and understanding comprehensive drug–drug interactions via semi-nonnegative matrix factorization. BMC Syst. Biol. 12(1), 101–110 (2018)

    Google Scholar 

  95. Shi, J.-Y., et al.: TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug–drug interactions of new drugs. BMC Bioinform. 19(14), 27–37 (2018)

    Google Scholar 

  96. Shi, J.Y., Mao, K.T., Yu, H., Yiu, S.M.: Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization. J. Cheminform. 11(1), 1–16 (2019). https://doi.org/10.1186/s13321-019-0352-9

    Article  Google Scholar 

  97. Zhang, P., Wang, F., Hu, J., Sorrentino, R.: Label propagation prediction of drug–drug interactions based on clinical side effects. Sci. Rep. 5(1), 12339 (2015)

    Article  Google Scholar 

  98. Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., Li, X.: Predicting potential drug–drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 18, 1–12 (2017)

    Article  Google Scholar 

  99. Cheng, F., Zhao, Z.: “Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Informat. Assoc. (2014). https://doi.org/10.1136/amiajnl-2013-002512

    Article  Google Scholar 

  100. Deepika, S.S., Geetha, T.V.: A meta-learning framework using representation learning to predict drug–drug interaction. J. Biomed. Inform. 84(June), 136–147 (2018). https://doi.org/10.1016/j.jbi.2018.06.015

    Article  Google Scholar 

  101. Wang, T. et al.: A multi-scale feature fusion model based on biological knowledge graph and transformer-encoder for drug–drug interaction prediction. bioRxiv, pp. 2001–2024 (2024)

  102. Tari, L., Anwar, S., Liang, S., Cai, J., Baral, C.: Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26(18), i547–i553 (2010)

    Article  Google Scholar 

  103. Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B.: Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4(125), 125ra31-125ra31 (2012)

    Article  Google Scholar 

  104. Kolchinsky, A., Lourenço, A., Li, L., Rocha, L.M.: Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug–drug interactions. Biocomput. World Sci. 2013, 409–420 (2013)

    Google Scholar 

  105. Liu, S., Tang, B., Chen, Q., Wang, X.: Drug–drug interaction extraction via convolutional neural networks. Comput. Math. Methods Med.. Math. Methods Med. (2016). https://doi.org/10.1155/2016/6918381

    Article  Google Scholar 

  106. Zhang, C., Lu, Y., Zang, T.: CNN-DDI: a learning-based method for predicting drug–drug interactions using convolution neural networks. BMC Bioinform. 23, 1–12 (2022). https://doi.org/10.1186/s12859-022-04612-2

    Article  Google Scholar 

  107. Jarada, T.N., Rokne, J.G., Alhajj, R.: SNF-NN: computational method to predict drug–disease interactions using similarity network fusion and neural networks. BMC Bioinform. 22(1), 1–20 (2021)

    Article  Google Scholar 

  108. Ye, Q., et al.: A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nat. Commun.Commun. 12(1), 6775 (2021)

    Article  Google Scholar 

  109. Luo, H., et al.: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 32(17), 2664–2671 (2016). https://doi.org/10.1093/bioinformatics/btw228

    Article  Google Scholar 

  110. Zhang, W., et al.: Predicting drug–disease associations by using similarity constrained matrix factorization. BMC Bioinformat. 19(1), 1–12 (2018). https://doi.org/10.1186/s12859-018-2220-4

    Article  Google Scholar 

  111. Jiang, H.J., Huang, Y.A., You, Z.H.: SAEROF: an ensemble approach for large-scale drug–disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-61616-9

    Article  Google Scholar 

  112. Wu, C., Gudivada, R.C., Aronow, B.J., Jegga, A.G.: Computational drug repositioning through heterogeneous network clustering. BMC Syst. Biol. 7, 1–9 (2013)

    Article  Google Scholar 

  113. Wang, W., Yang, S., Zhang, X., Li, J.: Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20), 2923–2930 (2014). https://doi.org/10.1093/bioinformatics/btu403

    Article  Google Scholar 

  114. Martinez, V., Navarro, C., Cano, C., Fajardo, W., Blanco, A.: DrugNet: network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med.. Intell. Med. 63(1), 41–49 (2015)

    Article  Google Scholar 

  115. Liu, H., Song, Y., Guan, J., Luo, L., Zhuang, Z.: Inferring new indications for approved drugs via random walk on drug–disease heterogenous networks. BMC Bioinform. 17, 269–277 (2016)

    Article  Google Scholar 

  116. Wang, Y., Guo, M., Ren, Y., Jia, L., Yu, G.: Drug repositioning based on individual bi-random walks on a heterogeneous network. BMC Bioinform. 20(15), 1–13 (2019)

    Google Scholar 

  117. Wu, G., Liu, J., Yue, X.: Prediction of drug–disease associations based on ensemble meta paths and singular value decomposition. BMC Bioinform. 20(3), 1–13 (2019)

    Google Scholar 

  118. Xie, G., et al.: Bgmsdda: a bipartite graph diffusion algorithm with multiple similarity integration for drug–disease association prediction. Mol. Omi. 17(6), 997–1011 (2021)

    Article  Google Scholar 

  119. Zhao, B.W., You, Z.H., Wong, L., Zhang, P., Li, H.Y., Wang, L.: MGRL: predicting drug-disease associations based on multi-graph representation learning. Front. Genet. (2021). https://doi.org/10.3389/fgene.2021.657182

    Article  Google Scholar 

  120. Jarada, T.N., Rokne, J.G., Alhajj, R.: SNF-NN: computational method to predict drug–disease interactions using similarity network fusion and neural networks. BMC Bioinform. 22(1), 1–20 (2021). https://doi.org/10.1186/s12859-020-03950-3

    Article  Google Scholar 

  121. Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., Wang, J.: Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 34(11), 1904–1912 (2018)

    Article  Google Scholar 

  122. Yang, M., Luo, H., Li, Y., Wu, F.-X., Wang, J.: Overlap matrix completion for predicting drug–associated indications. PLoS Comput. Biol. Comput. Biol. 15(12), e1007541 (2019)

    Article  Google Scholar 

  123. Zhang, W., Xu, H., Li, X., Gao, Q., Wang, L.: DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion. Bioinformatics 36(9), 2839–2847 (2020)

    Article  Google Scholar 

  124. Yang, M., Wu, G., Zhao, Q., Li, Y., Wang, J.: Computational drug repositioning based on multi-similarities bilinear matrix factorization. Brief. Bioinform.Bioinform. 22(4), bbaa267 (2021)

    Article  Google Scholar 

  125. Jamali, A.A., Tan, Y., Kusalik, A., Wu, F.-X.: NTD-DR: nonnegative tensor decomposition for drug repositioning. PLoS ONE 17(7), e0270852 (2022)

    Article  Google Scholar 

  126. Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., Cheng, F.: deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35(24), 5191–5198 (2019)

    Article  Google Scholar 

  127. Yang, X., Zamit, L., Liu, Y., He, J.: Additional neural matrix factorization model for computational drug repositioning. BMC Bioinform. 20, 1–11 (2019)

    Article  Google Scholar 

  128. Zhou, R., Lu, Z., Luo, H., Xiang, J., Zeng, M., Li, M.: NEDD: a network embedding based method for predicting drug–disease associations. BMC Bioinform. 21(13), 1–12 (2020)

    Google Scholar 

  129. Yu, Z., Huang, F., Zhao, X., Xiao, W., Zhang, W.: Predicting drug–disease associations through layer attention graph convolutional network. Brief. Bioinform.Bioinform. 22(4), bbaa243 (2021)

    Article  Google Scholar 

  130. Transl, J., Jiang, H.J., You, Z.H., Huang, Y.A.: Predicting drug–disease associations via sigmoid kernel-based convolutional neural networks. J. Transl. Med. (2019). https://doi.org/10.1186/s12967-019-2127-5

    Article  Google Scholar 

  131. C. N. Network and R. Unit: Inferring drug-related diseases based on convolutional neural network and gated. Molecules 24, 2712 (2019)

    Article  Google Scholar 

  132. Xuan, P., Cui, H., Shen, T., Sheng, N., Zhang, T.: HeteroDualNet : a dual convolutional neural network with heterogeneous layers for drug-disease association prediction via chou ‘ s five-step rule. Front. Pharmacol.Pharmacol. 10(1), November-12 (2019). https://doi.org/10.3389/fphar.2019.01301

    Article  Google Scholar 

  133. Li, Z., Huang, Q., Chen, X., Wang, Y., Li, J., Xie, Y.: Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network. Front. Chem. (2020). https://doi.org/10.3389/fchem.2019.00924

    Article  Google Scholar 

  134. Wang, H., Zhao, S., Zhao, J., Feng, Z.: A model for predicting drug–disease associations based on dense convolutional attention network. Math. Biosci. Eng.Biosci. Eng. 18(1), 7419–7439 (2021). https://doi.org/10.3934/mbe.2021367

    Article  Google Scholar 

  135. Tian, Z., Teng, Z., Cheng, S., Guo, M.: Computational drug repositioning using meta-path-based semantic network analysis. BMC Syst. Biol. 12(Suppl 9), 123 (2018)

    Google Scholar 

  136. Le, D.H., Nguyen-Ngoc, D.: Drug repositioning by integrating known disease-gene and drug–target associations in a semi-supervised learning model. Acta Biotheor. Biotheor. 66(4), 315–331 (2018). https://doi.org/10.1007/s10441-018-9325-z

    Article  Google Scholar 

  137. Yi, H.C., You, Z.H., Wang, L., Su, X.R., Zhou, X., Jiang, T.H.: In silico drug repositioning using deep learning and comprehensive similarity measures. BMC Bioinform. 22, 1–14 (2021). https://doi.org/10.1186/s12859-020-03882-y

    Article  Google Scholar 

  138. Zhang, Y., Lin, H., Yang, Z., Wang, J., Zhang, S.: A hybrid model based on neural networks for biomedical relation extraction. J. Biomed. Inform. (2018). https://doi.org/10.1016/j.jbi.2018.03.011

    Article  Google Scholar 

  139. Stokes, J.M., et al.: A deep learning approach to antibiotic discovery. Cell 180(4), 688-702.e13 (2020). https://doi.org/10.1016/j.cell.2020.01.021

    Article  Google Scholar 

  140. Li, J., Lu, Z.: A new method for computational drug repositioning using drug pairwise similarity. In: Proc.—2012 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2012, no. 1, pp. 453–456 (2012). https://doi.org/10.1109/BIBM.2012.6392722

  141. Fei, H., Ren, Y., Zhang, Y., Ji, D., Liang, X.: Enriching contextualized language model from knowledge graph for biomedical information extraction. Brief. Bioinform.Bioinform. 22(3), 1–14 (2021). https://doi.org/10.1093/bib/bbaa110

    Article  Google Scholar 

  142. Mam, S., Wichadakul, D., Vateekul, P.: Drug repurposing for type 2 diabetes using combined textual and structural graph representation based on transformer. IEEE Access 11, 65711 (2023)

    Article  Google Scholar 

  143. Liu, Y., Sang, G., Liu, Z., Pan, Y., Cheng, J., Zhang, Y.: MPTN: a message-passing transformer network for drug repurposing from knowledge graph. Comput. Biol. Med.. Biol. Med. 168, 107800 (2024)

    Article  Google Scholar 

  144. Zitnik, M., Agrawal, M., Leskovec, J., Science, C., Biohub, C.Z.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics (2018). https://doi.org/10.1093/bioinformatics/bty294

    Article  Google Scholar 

  145. Masumshah, R., Aghdam, R., Eslahchi, C.: A neural network-based method for polypharmacy side effects prediction. BMC Bioinform. 22(1), 1–17 (2021). https://doi.org/10.1186/s12859-021-04298-y

    Article  Google Scholar 

  146. Open Research Online (2016)

  147. Mohamed, S.K., Nounu, A., Nováček, V.: Biological applications of knowledge graph embedding models. Brief. Bioinform.Bioinform. 22(2), 1679–1693 (2021). https://doi.org/10.1093/bib/bbaa012

    Article  Google Scholar 

  148. Liu, S., An, J., Zhao, J., Zhao, S., Lv, H., Wang, S.: Drug–Target interaction prediction based on multisource information weighted fusion. Contrast Media Mol. Imaging 2021, 1 (2021)

    Article  Google Scholar 

  149. Ezzat, A., Wu, M., Li, X.-L., Kwoh, C.-K.: Drug–target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinform. 17(19), 267–276 (2016)

    Google Scholar 

  150. El-Behery, H., Attia, A.-F., El-Fishawy, N., Torkey, H.: An ensemble-based drug–target interaction prediction approach using multiple feature information with data balancing. J. Biol. Eng. 16(1), 1–14 (2022)

    Article  Google Scholar 

  151. Niu, J., Straubinger, R.M., Mager, D.E.: Pharmacodynamic drug–drug interactions. Clin. Pharmacol. Ther.. Pharmacol. Ther. 105(6), 1395–1406 (2019)

    Article  Google Scholar 

  152. Zhou, L., Wang, Y., Peng, L., Li, Z., Luo, X.: Identifying potential drug–target interactions based on ensemble deep learning. Front. Aging Neurosci. 15, 1176400 (2023)

    Article  Google Scholar 

  153. Han, K., et al.: A review of approaches for predicting drug–drug interactions based on machine learning. Front. Pharmacol.Pharmacol. 12, 814858 (2022)

    Article  Google Scholar 

  154. Jiménez-Luna, J., Grisoni, F., Schneider, G.: Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2(10), 573–584 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by JKSTIC DST.

Author information

Authors and Affiliations

Authors

Contributions

Basit, Idris, Injila wrote the main manuscript. Zubair and Assif prepared tabular data. Mushtaq critically reviewed it.

Corresponding author

Correspondence to Idris Afzal Shah.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no competing interests.

Additional information

Communicated by B. Bao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A.B., Shah, I.A., Injila et al. A review of deep learning algorithms for modeling drug interactions. Multimedia Systems 30, 124 (2024). https://doi.org/10.1007/s00530-024-01325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01325-9

Keywords

Navigation