Skip to main content
Log in

On the weak Harnack estimate for nonlocal equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove a weak Harnack estimate for a class of doubly nonlinear nonlocal equations modelled on the nonlocal Trudinger equation

$$\begin{aligned} \partial _t(|u|^{p-2}u) + (-\Delta _p)^s u = 0 \end{aligned}$$

for \(p\in (1,\infty )\) and \(s \in (0,1)\). Our proof relies on expansion of positivity arguments developed by DiBenedetto, Gianazza and Vespri adapted to the nonlocal setup. Even in the linear case of the nonlocal heat equation and in the time-independent case of fractional \(p-\)Laplace equation, our approach provides an alternate route to Harnack estimates without using Moser iteration, log estimates or Krylov–Safanov covering arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acerbi, E., Fusco, N.: Regularity for minimizers of non-quadratic functionals: The case 1 \(<\) p \(<\) 2. J. Math. Anal. Appl. 140(1), 115–135 (1989). https://doi.org/10.1016/0022-247X(89)90098-X

    Article  MathSciNet  Google Scholar 

  2. Adimurthi, K., Prasad, H., Tewary, V.: Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations. https://arxiv.org/abs/2205.09695 (2022)

  3. Adimurthi, K., Prasad, H., Tewary, V.: Hölder regularity for fractional p-Laplace equations. Proc.-Math. Sci. 133(1), 14 (2023). https://doi.org/10.1007/s12044-023-00734-6

    Article  Google Scholar 

  4. Alonso, R., Santillana, M., Dawson, C.: On the diffusive wave approximation of the shallow water equations. Eur. J. Appl. Math. 19(5), 575–606 (2008). https://doi.org/10.1017/s0956792508007675

    Article  MathSciNet  Google Scholar 

  5. Banerjee, A., Garain, P., Kinnunen, J.: Some local properties of subsolution and supersolutions for a doubly nonlinear nonlocal p-Laplace equation. Annali di Matematica Pura ed Applicata 201(4), 1717–1751 (2021). https://doi.org/10.1007/s10231-021-01177-4

    Article  MathSciNet  Google Scholar 

  6. Banerjee, A., Garain, P., Kinnunen, J.: Lower semicontinuity and pointwise behavior of supersolutions for some doubly nonlinear nonlocal parabolic p-Laplace equations. Commun. Contemp. Math. 1, 1 (2022). https://doi.org/10.1142/s0219199722500328

    Article  Google Scholar 

  7. Bögelein, V., Duzaar, F., Liao, N.: On the Hölder regularity of signed solutions to a doubly nonlinear equation. J. Funct. Anal. 281(9), 109173 (2021). https://doi.org/10.1016/j.jfa.2021.109173

    Article  Google Scholar 

  8. Bögelein, V., Duzaar, F., Liao, N., Schätzler, L.: On the Hölder regularity of signed solutions to a doubly nonlinear equation. Part II. Revista Matemática Iberoamericana 1, 1 (2022). https://doi.org/10.4171/rmi/1342

    Article  Google Scholar 

  9. Caffarelli, L.: Non-local diffusions, drifts and games. In: Nonlinear Partial Differential Equations, pp. 37–52. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-25361-4_3

  10. Caffarelli, L., Chan, C.H., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  Google Scholar 

  11. Castro, A.D., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Function. Anal. 267(6), 1807–1836 (2014). https://doi.org/10.1016/j.jfa.2014.05.023

    Article  MathSciNet  Google Scholar 

  12. Castro, A.D., Kuusi, T., Palatucci, G.: Local behavior of fractional p-minimizers. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 33(5), 1279–1299 (2016). https://doi.org/10.1016/j.anihpc.2015.04.003

    Article  MathSciNet  Google Scholar 

  13. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: A unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017). https://doi.org/10.1016/j.jfa.2017.02.016

    Article  MathSciNet  Google Scholar 

  14. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-0895-2

  15. DiBenedetto, E., Vespri, V.: On the singular equation \(\beta (u)_t=\Delta u\). Arch. Ration. Mech. Anal. 132(3), 247–309 (1995). https://doi.org/10.1007/bf00382749

    Article  MathSciNet  Google Scholar 

  16. DiBenedetto, E., Gianazza, U., Vespri, V.: Local clustering of the non-zero set of functions in \(W^{1,1}(E)\). Rendiconti Lincei - Matematica e Applicazioni, pp. 223–225 (2006). https://doi.org/10.4171/rlm/465

  17. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack estimates for quasi-linear degenerate parabolic differential equations. Acta Mathematica 200(2), 181–209 (2008). https://doi.org/10.1007/s11511-008-0026-3

    Article  MathSciNet  Google Scholar 

  18. Dibenedetto, E., Gianazza, U., Vespri, V.: Subpotential lower bounds for nonnegative solutions to certain quasi-linear degenerate parabolic equations. Duke Math. J. 143(1), 1 (2008). https://doi.org/10.1215/00127094-2008-013

    Article  MathSciNet  Google Scholar 

  19. DiBenedetto, E., Gianazza, U., Vespri, V.: Forward, backward and elliptic harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 9(2), 385–422 (2010)

    MathSciNet  Google Scholar 

  20. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s inequality for degenerate and singular parabolic equations. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1584-8

  21. Ding, M., Zhang, C., Zhou, S.: Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations. Cal. Variat. Part. Differ. Equ. 60(1), 1 (2021). https://doi.org/10.1007/s00526-020-01870-x

    Article  Google Scholar 

  22. Dyda, B., Kassmann, M.: Regularity estimates for elliptic nonlocal operators. Anal. PDE 13(2), 317–370 (2020)

    Article  MathSciNet  Google Scholar 

  23. Düzgün, F.G., Iannizzotto, A., Vespri, V.: A clustering theorem in fractional Sobolev spaces (2023). arXiv:2305.19965

  24. Egorov, D.: Sur les suites des fonctions meaurables. Comptes Rendus de Acad. des Sc. de Paris 152, 244–246 (1911)

  25. Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013). https://doi.org/10.1080/03605302.2013.808211

    Article  MathSciNet  Google Scholar 

  26. Giacomin, G., Lebowitz, J.L., Presutti, E.: Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. Math. Surv. Monogr. 64, 107–152 (1998)

    Article  MathSciNet  Google Scholar 

  27. Gianazza, U., Vespri, V.: A Harnack inequality for solutions of doubly nonlinear parabolic equations. J. Appl. Funct. Anal 1(3), 271–284 (2006)

    MathSciNet  Google Scholar 

  28. Giaquinta, M., Modica, G.: Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Mathematica 57(1), 55–99 (1986). https://doi.org/10.1007/bf01172492

    Article  MathSciNet  Google Scholar 

  29. Ivanov, A., Mkrtychyan, P.: On the regularity up to the boundary of generalized solutions of the first initial-boundary value problem for quasilinear parabolic equations that admit double degeneration. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.(LOMI) 196, 83–98 (1991)

  30. Ivanov, A.V.: Quasilinear parabolic equations that admit double degeneration. Algebra i Analiz 4(6), 114–130 (1992)

    MathSciNet  Google Scholar 

  31. Ivanov, A.V.: Hölder estimates for equations of fast diffusion type. Algebra i Analiz 6(4), 101–142 (1994)

    Google Scholar 

  32. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Cal. Variat. Part. Differ. Equ. 34(1), 1–21 (2008). https://doi.org/10.1007/s00526-008-0173-6

    Article  MathSciNet  Google Scholar 

  33. Kassmann, M., Weidner, M.: The parabolic Harnack inequality for nonlocal equations (2023). https://arxiv.org/abs/2303.05975

  34. Kinnunen, J., Kuusi, T.: Local behaviour of solutions to doubly nonlinear parabolic equations. Mathematische Annalen 337(3), 705–728 (2006). https://doi.org/10.1007/s00208-006-0053-3

    Article  MathSciNet  Google Scholar 

  35. Kuusi, T., Laleoglu, R., Siljander, J., Urbano, J.M.: Hölder continuity for Trudinger’s equation in measure spaces. Cal. Variat. Part. Differ. Equ. 45(1–2), 193–229 (2011). https://doi.org/10.1007/s00526-011-0456-1

    Article  Google Scholar 

  36. Kuusi, T., Siljander, J., Urbano, J.M.: Local Hölder continuity for doubly nonlinear parabolic equations. Indiana Univ. Math. J. 61(1), 399–430 (2012). https://doi.org/10.1512/iumj.2012.61.4513

    Article  MathSciNet  Google Scholar 

  37. Leugering, G., Mophou, G.: Instantaneous optimal control of friction dominated flow in a gas-network. In: Shape Optimization, Homogenization and Optimal Control, pp. 75–88. Springer (2018). https://doi.org/10.1007/978-3-319-90469-6_5

  38. Liao, N.: Hölder regularity for parabolic fractional \(p\)-Laplacian (2022). https://arxiv.org/abs/2205.10111

  39. Liao, N., Schätzler, L.: On the Hölder regularity of signed solutions to a doubly nonlinear equation: Part III. Int. Math. Res. Not. 3, 2376–2400 (2022). https://doi.org/10.1093/imrn/rnab339

    Article  Google Scholar 

  40. Lions, J.L.: Les inéquations en mécanique et en physique. Dunod 1, 1 (1972)

    Google Scholar 

  41. Mahaffy, M.W.: A three-dimensional numerical model of ice sheets: tests on the barnes ice cap, northwest territories. J. Geophys. Res. 81(6), 1059–1066 (1976). https://doi.org/10.1029/jc081i006p01059

    Article  Google Scholar 

  42. Severini, C.: Sulle successioni di funzioni ortogonali. Atti dell’Accademia Gioenia 3(5) Memoria XIII, 1a (1910)

  43. Strömqvist, M.: Harnack’s inequality for parabolic nonlocal equations. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 36(6), 1709–1745 (2019). https://doi.org/10.1016/j.anihpc.2019.03.003

    Article  MathSciNet  Google Scholar 

  44. Strömqvist, M.: Local boundedness of solutions to non-local parabolic equations modeled on the fractional p-Laplacian. J. Differ. Equ. 266(12), 7948–7979 (2019). https://doi.org/10.1016/j.jde.2018.12.021

    Article  MathSciNet  Google Scholar 

  45. Trudinger, N.S.: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21(3), 205–226 (1968). https://doi.org/10.1002/cpa.3160210302

    Article  MathSciNet  Google Scholar 

  46. Vespri, V.: On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations. Manuscripta Mathematica 75(1), 65–80 (1992)

    Article  MathSciNet  Google Scholar 

  47. Vespri, V., Vestberg, M.: An extensive study of the regularity of solutions to doubly singular equations. Adv. Cal. Variat. 15(3), 435–473 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Karthik Adimurthi, Agnid Banerjee and Vivek Tewary for helpful comments and suggestions. The author was supported by the Department of Atomic Energy, Government of India, under project no. 12-R &D-TFR-5.01-0520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Prasad.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Department of Atomic Energy, Government of India, under project no. 12-R &D-TFR-5.01-0520.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, H. On the weak Harnack estimate for nonlocal equations. Calc. Var. 63, 67 (2024). https://doi.org/10.1007/s00526-024-02670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02670-3

Mathematics Subject Classification

Navigation